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Abstract

Background: Various high throughput methods are available for detecting regulations at the level of transcription,
translation or posttranslation (e.g. phosphorylation). Integrating these data with protein networks should make it
possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support
identification of regulated entities from often noisy high throughput data. In particular, processing mass
spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the
case of experiments with drug-treated cells, reveal the drug’s mode of action.

Results: Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein
network information from STRING to identify differentially regulated subnetworks and individual proteins. The
method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance
testing. The Bayesian model accounts for information about both differential regulation and network topology. The
method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study
investigating the mode of action of sorafenib, a small molecule kinase inhibitor.

Conclusions: SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by
integrating protein networks. The method can also be applied to gene or protein expression data.

Background
Protein phosphorylation is one of the most important
posttranslational modifications in a living cell. Virtually
all cellular processes are regulated by the interplay of
protein kinases (proteins that phosphorylate their sub-
strates) and phosphatases (proteins that dephosphorylate
their substrates). Phosphorylation events are particularly
important in signal transduction, where signals caused
by external stimuli are transmitted from the cell mem-
brane to the nucleus. Here, phosphorylation events
often act as switches to activate or deactivate their sub-
strate proteins. In many cases, substrates of this process
are again kinases. This leads to the signal being propa-
gated along a signalling cascade until it finally triggers a
response (e.g. transcription or translation). Although sig-
nal transduction pathways are often depicted as a linear
series of steps, they may be considerably more complex
in reality: many run in parallel, are interconnected and

have feedback loops. Aberrations in these cascades can
lead to diseases, including cancer [1,2].
To identify phosphorylation sites (phosphosites) on a

large scale, mass spectrometry (MS) has become an
increasingly important technology [3]. Quantitative MS
in particular not only enables detection of phosphosites,
but can also measure their relative abundance. By com-
paring phosphorylation patterns before and after treat-
ment of cells with a drug that interferes with cell
signalling (e.g. kinase inhibitors), one can deduce the
drug’s effect on a signal transduction pathway. Unravel-
ling a drug’s mode of action is vital during drug discov-
ery and development, helping to identify new medical
applications, suggesting its use in combinational therapy,
and predicting the responsiveness of patients [4-6].
Similarly, other global quantification technologies such

as microarray and MS-based proteomics can measure
the expression of thousands to tens of thousands of
genes and proteins, respectively. Often, a few thousand
of them are identified as being significantly differentially
regulated, but interpreting these results at a single gene
or protein level is a tedious and frequently unsuccessful
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task. However, by integrating these data with protein-
protein interaction networks, it is possible to identify
significantly regulated subnetworks that can be inter-
preted directly in a biological context. Moreover, identi-
fying regulated entities from often noisy high throughput
data should be supported by this kind of integration.
One simple approach for detecting regulated sub-

networks could involve distinguishing between signifi-
cantly regulated and non-regulated phosphosites by
applying standard hypothesis testing procedures such as
t-statistics or SAM [7] to each phosphosite (the number
of data points corresponds to the number of experimen-
tal replicates). To avoid too many false positives, one
must further apply concepts such as the family-wise
error rate (FWER [8]) or the false discovery rate (FDR
[9]) for multiple hypothesis testing correction. Subse-
quently, the resulting list of statistically significant enti-
ties can be mapped on pathways or protein-protein
interaction networks, and connected subnetworks can
be determined. While this procedure may point to regu-
lated subnetworks, it is not an integrated solution, since
the significance of each protein solely depends on the
data of its own phosphosites, regardless of its interac-
tions with other proteins. More sophisticated
approaches use statistic-based techniques to score sub-
networks. In these cases proteins are first mapped onto
a protein interaction network, and subsequently high-
scoring subnetworks are extracted. Ideker et al. [10] use
an aggregated z-score of the form

z
k

zi

i S

S =
∈
∑1

,

where k is the number of nodes in the subnetwork and
zi is the z -score of a single protein in the subnetwork S.
High-scoring subnetworks are then found with a simu-
lated annealing approach [11]. Chuang et al. [12] pre-
sented a method based on the same idea, but with a
greedy search algorithm that specifies a seed and adds
the best nodes in the neighbourhood until the aggregated
score no longer improves. Subsequently, the significance
of the resulting subnetworks is assessed based on null
distributions estimated from permuted networks. How-
ever, neither method accounts for the network topology,
i.e. the degree of interconnections between nodes.
Subsequently, Sanguinetti et al. [13] introduced a

Bayesian probabilistic model that integrates a priori net-
work topology information into the analysis of high
throughput data. The authors used Gibbs sampling [14]
to obtain suitable posterior probabilities and thus
derived subnetworks. A major drawback of this method,
however, is the missing significance assessment for the
resulting subnetworks.

All methods described above used either only a subset
of known protein-protein interactions or KEGG path-
ways [15] for their assessment. To obtain the most
information from such investigations, and considering
that canonical pathway databases like KEGG are rather
static and contain only a limited number of interactions,
it seems natural to use larger and frequently updated
protein-protein interaction network databases such as
STRING [16] or FunCoup [17].
Here, we introduce a Bayesian probabilistic model that

combines local as well as topological information, i.e.
information about regulation of a certain node and
information about the connectivity with its neighbours.
Identification of subnetworks is carried out using a
genetic algorithm (GA [18]), followed by performing a
significance analysis based on a global rank test [19]. As
a special feature, the significance test not only considers
subnetworks, but also single nodes that are not part of
any larger subnetwork. This makes the proposed
method a powerful tool to uncover both differentially
regulated subnetworks and differentially regulated single
proteins. The performance was assessed on an artificial
data set as well as on a comprehensive phosphoproteo-
mics data set [20].

Methods
Data pre-processing and z-score calculation
The input of the proposed method is formed by a table
with n rows and m columns; n being the number of
detected phosphosites and m the number of biological
replicates (i.e. MS measurements of experiments using
identical settings but conducted independently). Several
replicates (at least 3-5) are necessary to reliably identify
differential phosphorylations. Each value in this table
represents a ratio between the degree of phosphoryla-
tion under two conditions (e.g. the extend of phosphory-
lation of a specific site in cells treated with a drug
versus its degree in untreated cells).
Log-transformation is preferred before calculating the

z-score, since the distribution of the transformed ratios
is closer to normal. Subsequently, the log-ratios xij of
phosphosites i = 1, ..., n and replicates j = 1, ..., m are
further transformed to z-scores (referred to as single z-
scores) using the formula:

z
xij

ij =
−
∧





0
, (1)

where μ0 = 0, since it is expected that the majority of
phosphosites are not differentially regulated and there-
fore their log-ratios are 0, and 

∧ the standard deviation
across replicates estimated on the entire data set.
Further, a combined z-score for each phosphosite over

Klammer et al. BMC Bioinformatics 2010, 11:351
http://www.biomedcentral.com/1471-2105/11/351

Page 2 of 13



all replicates is calculated as:

z
m

zi ij

j

m

=
=

∑1

1

. (2)

Not all phosphosites are detected in every experimen-
tal replicate. The resulting missing values are simply
ignored, so, for example, if three replicates have been
conducted and a given phosphosite was only detected in
two of them, m is set to 2 for this site and the combined
score is calculated based on the two available z-scores.

Protein network preparation
In this work STRING [16] was chosen as the source for
protein-protein interactions. STRING is a comprehen-
sive resource that combines a vast number of databases
derived in different ways (e.g. experimentally determined
interactions, gene neighbourhood data, or data acquired
via text mining) and is able to transfer homology
information across organisms. Obviously the method
presented here is not limited to STRING and can also
be used in combination with other protein-protein-
interaction databases. Depending on the context of the
study databases like HomoMINT [21], HPRD [22], or
FunCoup [17] may be preferable.
In STRING, all interactions are assigned with a

confidence value ranging from 0 to 1. To retain only high
confidence interactions, a very conservative cut-off value
of 0.995 is used. While this cut-off may seem too high,
there is a valid reason for it: some interactions reach very
high confidence values (> 0.99), although the evidence is
only from text mining, which was considered too weak
evidence. Furthermore, analysis of canonical pathways
showed that virtually all known interactions pass this
high cut-off of 0.995. Applying this cut-off, an interaction
network of approximately 10,000 interactions between
2,997 proteins is obtained (STRING version 8.1).
Subsequently, the phosphoproteomic data is mapped

on the network (see upper part of Figure 1). Before
doing so, the list of phosphosites has to be aggregated
to a list of proteins, with one z-score per protein and
replicate. This is done by simply assigning the values of
the phosphosite with the highest combined z-score
among all phosphosites of a protein to this protein.
Then, each protein is mapped on the interaction net-
work, where each node has m single z-scores and the
combined z-score. Nodes that do not have a corre-
sponding entry in the phosphoproteomics data set are
thought of being not regulated and thus their z-scores
are set to 0. On the other hand, proteins on the list that
do not occur in the network are added but without any
connections in order to give them the chance of being
identified as regulated single proteins later on. In the

genetic algorithm described below, only nodes in the
interaction network will be considered; the set of uncon-
nected nodes will be used again when it comes to signif-
icance assessment in the final step of the method.

Bayesian probabilistic model
A probabilistic model that takes into account the above
derived z-scores and the network topology was devel-
oped. Let ci Î {0,1} be the latent class variable, with ci =
1 if node i belongs to a differentially regulated subnet-
work and ci = 0 if not. Note that the approach can easily
be generalized to three classes, if up- and down-regu-
lated subnetworks shall be distinguished. Given the
combined z-scores z1, ..., zn derived from the observa-
tions, the posterior probability of the subnetwork config-
uration (c1, ..., cn) is

p c c z z
p z zn c cn p c cn

p zn n( , , | , , )
( , , | , ..., ) ( , , )

( ,...,1 1
1 1 1

1
… … = … …

zzn)
.(3)

where the right-hand side is obtained by applying
Bayes’ theorem. The denominator p (z1, ..., zn) does not
depend on the ci and can be ignored when maximizing
the posterior probability. Since the observed data of
node i are mutually conditionally independent (given
the other nodes’ class variables) and depend only on the
class variable of the node itself, the conditional probabil-
ity can be written as

p z z c c p z cn n

i

n

i i( , , | , , ) ( | ).1 1

1

… … =
=

∏ (4)

Normal distributions  (μ, s) with μ = 0 and s = 1
or s = s z are assumed:

p z c z

p z c z
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(5)

The prior probability for the subnetwork configuration
p (c1, ..., cn) is derived analogously to the derivation of
the joint probability distribution from conditional prob-
abilities in Bayesian networks. Let Ni be the set of par-
ents of node i. If the protein interaction network was a
directed acyclic graph and the joint distribution fulfilled
the Markov condition, the following equality would hold
[23]:

p c c p c c j Nn

i

n

i j i( , , ) ( |( , )).1

1

… = ∈
=

∏ (6)

Clearly, protein-protein interaction networks are no
directed acyclic graphs. Nevertheless, the prior can be
modelled by applying this theorem, if Ni is now defined
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Figure 1 Workflow of the subnetwork extraction. First, single and combined z-scores are calculated from the phosphoproteomics data set
and subsequently mapped on an interaction network (orange nodes). Proteins that do not occur in the interaction network are stored in a
separate list (violet node). For the genetic algorithm (GA) procedure the network is encoded into a binary vector, where 1 codes for the
associated node being active (i.e. part of a regulated subnetwork) and 0 inactive. The GA runs for a defined number of generations (exemplarily,
the two-point crossover step in combination with a single-point mutation is depicted), and the strongest individual of the final generation
encodes for the globally best achievable solution (here, this would be a subnetwork containing six nodes and a single-node network). Finally,
the global rank (GR) significance test is performed on both extracted subnetworks and single nodes (or-more generally-single-node subnetworks)
resulting in a set of significantly regulated subnetworks (only one in the depicted example).
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as the set of neighbours of node i. The conditional
probabilities are modelled similarly to [13]:

p c c j N
Ni

j Ni c j
i j i( |( , ))
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+
1
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and
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or equivalently
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where the parameter a determines the weight of the
network structure, and |Ni| is the number of neigh-
bours. For very large a, the posterior probability is not
influenced by the network structure. Taking the loga-
rithm of Equation (3), inserting above equations, and
ignoring the constant summands, the log posterior
probability is:
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The model parameters a and sz are fixed. In principle,
they could be handled as unknown parameters in the
Bayesian model, with the effect that the joint posterior
probability would have to be maximized for (c1, ..., cn),
a and sz. Since the results turned out to be rather
insensitive to variations in a and sz (see Results and
Discussion), the model and the optimization were sim-
plified by a priori fixing of these parameters.

Subnetwork extraction
To maximize the posterior probability, the optimal com-
bination of the nodes’ class associations (i.e. whether a
protein is part of a regulated subnetwork to be extracted
or not) has to be found. Since this problem is NP-hard
[10], a heuristic strategy has to be applied. Genetic algo-
rithms (GAs) are particularly well-suited for this kind of
binary-valued combinatorial problem, since they are able
to find close-to-optimum solutions even in complex
scoring landscapes with many local optima (see e.g. [18]
for more details). An overview of a standard GA work-
flow can be found in Additional file 1.
To apply a GA to the subnetwork extraction problem,

the network has to be encoded into a vector (i.e. an
individual’s chromosome). Here each node in the

network was assigned a consecutive index value that
represents the position of this node in the vector. The
values in the vector are binary: 1 meaning that the cor-
responding node is part of a regulated subnetwork, and
0 that it is not (see also Figure 1). Initially, values of
these binary vectors are randomly generated, one for
each of the 1000 individuals used. According to the
Bayesian scoring function described above, the fitness of
each individual is evaluated and 100 individuals are
selected and used for breeding. Selection of these indivi-
duals is performed using the tournament selector (cf.
[24]), which randomly draws a subset of individuals and
then determines the fittest within this subset. By repeat-
ing these steps 100 times, the 100 parent individuals are
selected. Tournament selection ensures that average-
performing individuals also have some chance to repro-
duce, which reduces the risk of premature convergence.
Recombination of the selected individuals is carried out
with two-point crossover, that is, the chromosomes of
two parents are cut at two identical, random points c1
and c2, and the genes in the range [c1, c2] are crossed
(see also Figure 1). Mutation, which is a simple bit ip,
occurs with a probability of 0.05. The newly created
offspring’s fitness is assessed, and the fittest offspring
replaces the weakest individual in the parental
generation. Then the algorithm continues with the
selection of a new set of parents. The algorithm is run
for 5000 generations, an empirically determined value,
from where on no more appreciable improvement is
observed. The best solution (represented by the indivi-
dual with the highest fitness value in the final genera-
tion) is then used to extract all subnetworks from the
entire network by starting at a given node, checking all
neighbours for their class association, and iteratively
adding all neighbours that belong to a regulated subnet-
work. To avoid cycles, every node is flagged after it has
been checked, and if no more neighbours are to be
added to the current subnetwork in a certain iteration
step, another as yet unchecked node is used as the start-
ing point for the next subnetwork. This is repeated until
no unchecked nodes are left, and therefore all subnet-
works are detected. The z-score of a subnetwork is then
defined as:

z
Ss

zs i

i Ss

=
∈
∑1

| |
| |, (11)

where zi is the combined z -score of a protein as
described in (2), Ss is the set of proteins in the subnet-
work, and |Ss| is its size. The absolute value of zi is
taken, since it is not know a priori whether the interac-
tion between two proteins is activating or inhibiting,
and therefore this distinction is not made. Rather only
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the degree of regulation is taken into account. When
analysing gene or protein expression data, however, the
direction of regulation may be important and should
not be ignored. In such cases, the signed values can be
used. In some cases, a subnetwork may contain only
one node, which is not an issue, since both significant
subnetworks and single nodes shall be determined
anyway.

Significance evaluation
Once regulated subnetworks are extracted, one has to
determine their statistical significance. Single nodes
(those that could not be mapped on the network but
had been detected in the phosphoproteomics experi-
ment) are regarded as subnetworks with only one mem-
ber and are thus added to the list of subnetworks. The
significance test is based on a modified version of the
global rank test [19].
The main idea of this method is to identify differen-

tially regulated entities (genes, proteins or subnetworks)
not based on hypothesis tests conducted for each entity
independently, but rather based on the entire set of
entities at once. Under the null hypothesis that entities
are neither up- or down-regulated, the authors state the
theorem of random ordering, i.e. that no entity can
rank consistently high or low across all replicates. On
the contrary, those entities that do consistently rank top
or bottom in all replicates are identified as being signifi-
cantly regulated. The number of identified significant
entities will then solely depend on the number that
determines how many entities are considered top or
bottom ranked (here denoted as N), e.g. if N is chosen
to be a small number, only a few entities or none at all
will be among the top-N or bottom-N across all
replicates.
Raising N not only increases the number of identified

significant entities, but also the expected number of
false positives. As described in [19], this number of
false positives can be estimated non-parametrically
from the empirical null distribution. The idea for this
procedure is that a non-regulated entity has the same
probability of ranking top-N as ranking bottom-N. In
other words, under the null hypothesis an entity has
the same probability of ranking top-N across all repli-
cates (denoted as TTT for three replicates [R = 3]) as
ranking bottom-N across all of them (BBB) or top-N in
the first two and bottom-N in the third (TTB). The
same is true for all 2R = 8 classes of possible combina-
tions of high and low ranks. Entities in the TTT and
BBB classes are differentially regulated, and those in
the remaining 2R - 2 = 6 classes are not. By dividing
the average number of entities in the 6 non-consis-
tently regulated classes by the number of those in one

of the regulated classes, for each N the FDR can be
estimated (once for up- and once for down-regulated
entities). Different values of N can now be tried until
the desired FDR level is reached (cf. algorithm in
Table 1, line 10 - 19).
For the application to subnetworks the method esti-

mating false positives has to be modified, since the sub-
networks’ z-scores have non-negative values only, which
means that bottom-N ranking subnetworks would be the
ones with the weakest regulation. To overcome this pro-
blem, one first has to introduce another way of counting
entities that fall under the non-consistently regulated
classes, since the bottom ranked no longer represent dif-
ferentially regulated entities. In this new counting pro-
cess, not simply the entities in the non-regulated classes
are counted but rather the signs of the replicates’ z-
scores are alternately changed (cf. algorithm in Table 1,
line 5 - 8) and subsequently the number of entities that
consistently rank top across all replicates after this
transformation are counted (cf. algorithm in Table 1,
line 14 - 16). In the case of the TTB class, for example,
rather than determining the number of entities ranking
top-N in the first two replicates and bottom-N in the
third, the signs of the third replicate’s z-scores are
flipped and one determines the number of entities now
ranking top-N across all three replicates (those that are
now in the TTT class). Note that both counting meth-
ods yield the same results, since it makes no difference
whether one counts the number of bottom-N entities of
a given replicate or the number of sign-flipped top-N
ones.
The z-score of a subnetwork is as defined in (11),

where zi is the combined score over all replicates. To
find subnetworks that are top ranked across all repli-
cates z-scores have to be calculated for each replicate
separately:

z
Ss

zij
i S

sj =
∈
∑

1
| |

,
s

(12)

where zij is calculated with equation (1). The problem
here is that two nodes within a subnetwork - one with a
highly positive and one with a highly negative score -
would mutually neutralize each other. This effect is
undesirable, since the direction of regulation does not
matter for the application described here. On the other
hand, if the absolute value of zij was taken, the sign-flip-
ping used to calculate the FDR would have no effect.
Thus, a trick is applied: if the sign of a given zij is in
accordance with the z -scores of all replicates (i.e. if it
has the same sign as ∑j’ zij’), zij will contribute positively
to the score z sj

∧ , if not it will contribute negatively:
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where sgn is the sign function. This equation is
applied in line 12, 15 and 21 of the algorithm in Table 1
to find consistently top ranked subnetworks.
Entities that lack data in one replicate are accepted as

differentially regulated, if they rank top in the remaining
m - 1 replicates. This criterion compensates for missing
data, a particular problem in mass spectrometry
experiments.

Implementation
Pre-processing, z-score calculation and generation of the
artificial data set was performed using Matlab. The Sub-
Extractor algorithm is written in Java using the GA
library Jenes (http://jenes.ciselab.org; version 1.2.0) and
made available for download online at http://www.
kinaxo.de/SubExtractor. Java version 5.0 or higher is

required to run the program. Network diagrams were
created with Cytoscape [25].

Results and Discussion
Artificial data
To benchmark and assess the proposed method, the algo-
rithm was tested with artificial data. For this purpose,
scale free networks based on the algorithm described in
[26] with 1000 nodes and an average connectivity of
approximately 3.5 were generated. Artificial z-scores
were produced by sampling values for 969 nodes from a
normal distribution with μ = 0 and s = 1 representing
non-regulated proteins (background distribution); three
times for each entity to simulate experimental replicates.
The values for the 31 regulated nodes were determined
in a two-step procedure. First, the means x were sampled
from a normal distribution with μ = 0 and s = 5. Second,
the actual replicate values were generated by drawing
three times from a normal distribution with μ = x and s
= 1. All 31 regulated nodes are connected with each
other forming one regulated subnetwork, which should
be extracted by the algorithm as accurately as possible.
This data generation process was repeated ten times,
resulting in ten artificial data sets.
Different sz and a values were used to assess the sub-

network reconstruction. Values of the sz parameter ran-
ged from 2.0 to 8.0. The parameter a that determines the
weight of the network structure on the entire Bayesian
score was varied within a range of 0.01 to 10. Figure 2
shows the mean prediction accuracies over all ten artificial
data sets at an FDR level of 0.05 (with 100 GA individuals
and 3000 GA generations). Not surprisingly, a sz value of
5.0 delivers the best results (see Figures 2a and 2b), which
is the same value as used for sampling the regulated
nodes. At the same time, the graphs show a rather weak
dependence on its exact value. Only very small values (e.g.
sz = 2.0) lead to a considerable increase of false positive
predictions (see Figure 2a), which was also expected since
such values are already very close to the a value of the
background distribution. For a, the best results could be
obtained by setting its value between 0.5 and 2.5 (see Fig-
ures 2c and 2d). Lower values cause the model to put too
much weight on the network structure, which causes espe-
cially weakly regulated nodes that are only connected to
strongly regulated ones to be spuriously incorporate into
the regulated subnetwork. Higher values, on the other
hand, result in under-weighting of the network structure,
which in turn causes an incorporation of moderately regu-
lated nodes even if the majority of their neighbours are
not regulated at all. Furthermore, one can clearly see that
the results are not sensitive to the exact values of the para-
meters a and sz, which supports the decision to fix them
a priori. However, the overall prediction accuracy steeply
increases between a-values of 0.25 and 0.5 (see Figure 2d).

Table 1 Overview of significance evaluation

1: A = z-transformed phosphoproteomic data (n phosphosites, m
replicates)

2: STRING = STRING interaction data

3: origSN = list of extract subnetworks from STRING using A

4: flippedSNs = container for flipped subnetwork lists

5: for all s Î Cartesian product {-1, +1}m without {(-1,...,-1), (+1, ..., +1)}
do

6: flippedA = multiply values in column (1, ..., i, ..., m) of A with the
value at index i in s

7: add list of extracted subnetworks from STRING using flippedA to
flippedSNs

8: end for

9: FDR = 1.0

10: N = n

11: while FDR > desired FDR cutoff and N >0 do

12: origCount = count subnetworks that are among the N most-
regulated ones across all replicates in origSN

13: flippedCount = 0

14: for all flipped lists of subnetworks in flippedSNs do

15: flippedCount = flippedCount + number of subnetworks from list
of flipped subnetworks that are among the N most-regulated ones
across all replicates

16: end for

17: FDR = (flippedCount/number of lists in flippedSNs)/origCount

18: N = N - 1

19: end while

20: if N > 0 then

21: return list of subnetworks that are among the N + 1 most-
regulated ones across all replicates in origSN

22: else

23: return empty list

24: end if

The algorithm for significance evaluation in pseudocode.
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This is due to the effect that if a non-regulated node has
only one connection to a well-regulated node (and no
other connections) and a is smaller than a critical value
ac, it will be added to the differentially regulated subnet-
work, just because of this special connectivity property. To
avoid this undesired effect, a has to be chosen

  


> =

−
c

z

z



 

( | , )

( | , ) ( | , )

0 0 2

0 0 1 0 0 2
(14)

(the derivation of this formula and further explanation
can be found in Additional file 1). For sz = 5.0 this
leads to valid a values of a > 0.25, which explains the
large number of false positives for values ≤ 0.25 (as
depicted in Figure 2c).
A detailed graphical view of the a parameter’s impact

on the prediction results can be seen in Figure 3, where
the originally regulated network and three examples of
networks reconstructed by the method (for a fixed sz of
5.0 and alpha set to 0.3, 1 and 5) are depicted. A small

Figure 2 SubExtracor’s performance on artificial data. Ten artificial data sets were generated to assess the prediction quality of SubExtractor.
The top figures (2a and 2b) show the performance for varying sz values and a fixed a of 1.0. The figures at the bottom (2c and 2d) depict the
mean accuracy for varying a values ranging from 0.01 to 10 and a fixed sz of 5.0. Nodes sampled with the background distribution (s = 1) are

the negatives, those coming from the distribution with s = 5 are the positives. The FN rate is defined as
false negatives
actual positives

, the FP rate as

false positives
actual negatives

The overall prediction accuracy is 1 − +
+

false negatives false positives
actual negatives actual positiives

. Error bars display the standard error of the mean

over the ten generated data sets.
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value of a just above ac(Figure 3 top right) causes an
acquisition of some low regulated nodes (the bright
ones within the green circles), since the Bayesian score
is mainly influenced by the network structure. On the
other hand, one node is lost since it has many connec-
tions to non-regulated nodes but only a few to regulated
ones (7 and 3, respectively) causing the network to
break apart (upper right empty circle). For a = 0.3, the
algorithm extracts 4 false positive nodes while missing 3
true positives. On the contrary, a high value of a = 5
(Figure 3 bottom right) causes the algorithm to almost

entirely ignore topology information, and thus nodes are
incorporated mostly according to their level of regula-
tion. This leads to false positive classification of 5 nodes,
of which 4 are fairly well-regulated (i.e. although they
were sampled from the background distribution they
received a high score by chance), and the fifth one-
although not regulated itself-acts as a link to one of the
well-regulated false positives. Only one of the true posi-
tives was missed. The results for a = 1 (Figure 3 bottom
left) form a good compromise between the previous two
settings, as neither of the two score components is over-

Figure 3 Example of subnetwork extraction for one artificial data set. The top left area shows the network of 31 nodes that have been
sampled from the normal distribution with μ = 0 and s = 5, thus being the regulated ones in the artificial data set containing 1000 nodes in
total. The remaining three areas show networks reconstructed by the proposed algorithm using different values of the parameter a. The
colouring represents the level of regulation, where down-regulated nodes are coloured blue, up-regulated ones red and non-regulated nodes
white (the darker the colour the stronger the regulation). The differences between the original and the reconstructed subnetworks are
highlighted by green ellipses.
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weighted. This reconstructed network has a lower num-
ber of false predictions (3 false positives and 1 false
negative), which is a very satisfying result given that
many nodes classified as regulated show very moderate
regulation (weaker than some nodes from the back-
ground distribution). To demonstrate the advantage of
SubExtractor over a method that does not take network
information into account, the original global rank test
[19] was applied to the artificial data sets. The average
false negative rate of this method at an FDR level of
0.05 was 29.0%, the average false positive rate was 0.2%
(the best results of SubExtractor with a = 1.0 and sz =
5.0 were 11.3% and 0.7%, respectively). Although SubEx-
tractor produces slightly more false positives, the super-
ior capability to detect true positives even if they are
only moderately regulated is obvious.

Sorafenib mode of action study
Subsequently the algorithm was applied to a real phos-
phoproteomics experiment, in which triply SILAC-
labeled PC3 cells were incubated with the small mole-
cule kinase inhibitor sorafenib (Nexavar®, Bayer Health-
Care) for 30 and 90 minutes, including a control [20].
Proteins were extracted and digested, and phosphopep-
tides were enriched using SCX-IMAC/TiO2. High reso-
lution LC-MS/MS data of three biological replicates
were processed using MaxQuant [27].
A total of 15, 800 class-1 sites (i.e. highly confident

phosphosites) on 3, 900 unique proteins were detected.
Since two time points are not sufficient to perform any
sensible time-course analysis, the more time point with
the more extreme absolute value of its average log ratios

(either log 30min
ctrl

or log 90min
ctrl

) over the three repli-
cates is taken for each phosphosite. Phosphorylation
sites were then pre-processed as described in the Meth-
ods section. Interaction data was taken from STRING
version 8.1 [16] and pre-processed as described in Meth-
ods. The a parameter was set to 1.0, based on the obser-
vations made from artificial data. sz was estimated by
applying the original global rank method [19] to the list
of phosphosites and calculating the standard deviation
of the resulting differentially regulated sites’ combined
z-scores, which led to a value of sz = 5.5. Other para-
meter values were also tested, resulting in very similar
networks (data not shown). This supported the findings
from the artificial data study, where it has been shown
that results are rather insensitive to the exact parameter
values.
At an FDR level of 0.05, the proposed algorithm was

able to reconstruct 21 significantly regulated subnet-
works with 168 nodes in total. Additionally, 225 indivi-
dual proteins were identified as significantly regulated.
A selection of the results are depicted in Figure 4.
Besides parts of the MAPK pathway, which is known to
be affected by sorafenib, the largest network contains a
substantial fraction of proteins from the mTOR path-
way, which was previously not known to be affected.
Subsequent enrichment analyses of the mTOR KEGG
pathway confirmed the results of SubExtractor (p-value
< 0.005 using Fisher’s exact test; data not shown). In
particular, a substantial number of translation initiation
factors (eIF’s) show regulation of phosphorylation upon
sorafenib treatment. Further biological interpretation
and validation will be published in [20].

Figure 4 Subnetwork extraction for sorafenib mode of action study. The largest two resulting subnetworks are shown (blue nodes are
down-regulated, red ones up-regulated) Proteins in the orange circles belong to the MAPK pathway, which is known to be affected by
sorafenib. The green rectangle depicts the part of the largest subnetwork that belongs to the mTOR pathway, has not previously been reported
to be affected by sorafenib. The network on the right hand side shows important strength of the algorithm, i.e. that subnetworks are also
reconstructed if the centre node (i.e. the hub) is not detected to be regulated.
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Another example in Figure 4 depicts a subnetwork
centring the tumour suppressor p53. This example
shows the strength of the method to reconstruct net-
works, even if the hub of the subnetwork is not phos-
phorylated, not detected, or not regulated. Greedy
search methods that grow subnetworks by selecting a
seed and iteratively expand it by adding regulated
neighbours cannot identify such subnetworks. The
complete result in Cytoscape session file format is pro-
vided as Additional file 2, and in Excel format as Addi-
tional file 3.

Normal distribution assumption
Both regulated and non-regulated phosphosites were
assumed to be normally distributed with different var-
iances (1 and sz, respectively). Hence, a mixture model
of these two distributions should describe the experi-
mental data well. To further investigate this assump-
tion we created a probability plot, which is used to
assess whether data comes from a given distribution.
However, the plot (see Additional file 1) indicates that
a mixture model of standard normal and t location
scale distribution (essentially a normal distribution
with heavier tails) fits the data better than the mixture
of the two normals.
Next, the impact of the different distributions on the

SubExtractor results was assessed by modelling the
regulated data (cf. Equation 5) with a t location scale
distribution with the mean parameter set to 0, a var-
iance of  z

2 and 6 degrees of freedom (estimated
based on the fit above). However, the results of the t-
normal mixture model were strikingly similar to those
of the normal-normal mixture, suggesting that the
slightly better fit of the former does not increase the
prediction accuracy (compare Additional files 2 and 4).
Given the simplicity of normal distributions (i.e. in
comparison to t distributions no degrees of freedom
have to be estimated) and the comparable results, the
normal-normal mixture model was considered
preferable.

Alternative STRING network preparation
Instead of applying a very conservative cut-off of 0.995
to the combined STRING interaction score, an alterna-
tive version was created where the score was re-com-
puted omitting text mining evidence. The computation
was performed according to [28], and should avoid very
high confidence values that are only due to sometimes
doubtable text mining evidences. For the re-computed
score the cut-off was set to 0.95, which is still conserva-
tive but increases the number of interactions by 80%

and the number of involved proteins by 20%. SubExtrac-
tor was then run with this version of network informa-
tion and the sorafenib data (all parameters were left
unchanged). While the general tendency of affected
pathways and groups of proteins is very similar, the
nodes of the largest network have roughly doubled
making it rather complex (see Additional file 5). The
decision on which network data file to use is left to the
user, as it may depend on the application whether he
prefers rather complex but comprehensive networks or
smaller networks that are easier to interpret. Both files
are available for download at http://www.kinaxo.de/
SubExtractor.

Conclusion
Here, we propose a novel method, SubExtractor, for
extracting differentially regulated subnetworks from pro-
tein-protein interaction networks based on data from
global quantification technologies. The core of the
method is formed by a Bayesian probabilistic model that
accounts for the regulation of proteins as well as for the
network structure. A genetic algorithm was implemen-
ted to find the subnetworks that maximize the Bayesian
score. Furthermore, a global rank significance test was
used to distinguish between significantly regulated sub-
networks and those formed by chance.
Although some parts of the method have already been

presented elsewhere (cf. Introduction), the main advan-
tage of the proposed method is the combination of the
three main parts: Bayesian probabilistic model, powerful
heuristics in the form of GA and rigorous significance
testing. To our knowledge, none of the existing methods
offer this combination. Additionally, the significances of
single nodes (i.e. either proteins that could not be
mapped on the interaction network or extracted single-
node networks) are also assessed, which makes separate
statistics on a protein scope redundant. Using data from
the comprehensive STRING database guarantees high
reliability of the detected interaction subnetworks. The
method was tested with artificial data sets and showed a
high level of reconstruction accuracy. Knowledge from
this study was transferred to a mode of action study,
where SubExtractor revealed differentially regulated sub-
networks from known and novel sorafenib-affected
pathways, e.g. the MAPK-and mTOR-pathway, respec-
tively. These regulated subnetworks led to creating new
hypotheses about the mode of action of sorafenib in
prostate cancer PC3 cells [20]. Furthermore, the subnet-
works may also play an important role in discovering
biomarkers. It has been shown [12] that identified mar-
kers for class prediction are more reproducible if their
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identification is based on subnetworks rather than single
genes. Generalization of the proposed method for iden-
tifying subnetwork markers used for class prediction will
be the focus of future work.

Additional material

Additional file 1: Supplementary document. This document contains
an introduction to Genetic Algorithms, a guideline for finding the lower
bound of parameter a, and the probability plot comparing a mixture
model of two normal distributions with a mixture of a normal and a t
location scale distribution.

Additional file 2: Complete set of extracted subnetworks from
sorafenib data. This file contains the set of all significant subnetworks
and single nodes that have been extracted from the sorafenib mode of
action data with SubExtractor. Two normal distributions as described in
the Methods section were used to model the distribution of non-
regulated and regulated phosphosites. The open source software
Cytoscape http://www.cytoscape.org/ is required to view this file. If the
file has the format *.zip you have to re-name it to *.cys in order to be
able to open it with Cytoscape.

Additional file 3: List of extracted proteins from sorafenib data. This
Excel file contains a list of all proteins that are part of a significantly
regulated subnetwork extracted from the sorafenib mode of action data,
along with their Uniprot accession numbers, combined z-scores and
subnetwork affiliation.

Additional file 4: Complete set of extracted subnetworks from
sorafenib data using a t distribution. This file essentially contains the
same data as Additional file 2, but this time a t location scale distribution
as described in the Normal Assumption subsection was used to model
the distribution of differentially regulated phosphosites. The open source
software Cytoscape http://www.cytoscape.org/ is required to view this
file. If the file has the format *.zip you have to re-name it to *.cys in
order to be able to open it with Cytoscape.

Additional file 5: Complete set of extracted subnetworks from
sorafenib data using the alternative STRING data. This file contains
the set of all significant subnetworks and single nodes that have been
extracted from the sorafenib mode of action data with SubExtractor
using the alternative STRING data described in the Alternative STRING
network preparation subsection. The open source software Cytoscape
http://www.cytoscape.org/ is required to view this file. If the file has the
format *.zip you have to re-name it to *.cys in order to be able to open
it with Cytoscape.
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BackgroundProtein phosphorylation is one of the most important posttranslational modifications in a living cell. Virtually all cellular processes are regulated by the interplay of protein kinases (proteins that phosphorylate their substrates) and phosphatases (proteins that dephosphorylate their substrates). Phosphorylation events are particularly important in signal transduction, where signals caused by external stimuli are transmitted from the cell membrane to the nucleus. Here, phosphorylation events often act as switches to activate or deactivate their substrate proteins. In many cases, substrates of this process are again kinases. This leads to the signal being propagated along a signalling cascade until it finally triggers a response (e.g. transcription or translation). Although signal transduction pathways are often depicted as a linear series of steps, they may be considerably more complex in reality: many run in parallel, are interconnected and have feedback loops. Aberrations in these cascades can lead to diseases, including cancer 12.To identify phosphorylation sites (phosphosites) on a large scale, mass spectrometry (MS) has become an increasingly important technology 3. Quantitative MS in particular not only enables detection of phosphosites, but can also measure their relative abundance. By comparing phosphorylation patterns before and after treatment of cells with a drug that interferes with cell signalling (e.g. kinase inhibitors), one can deduce the drug�s effect on a signal transduction pathway. Unravelling a drug�s mode of action is vital during drug discovery and development, helping to identify new medical applications, suggesting its use in combinational therapy, and predicting the responsiveness of patients 456.Similarly, other global quantification technologies such as microarray and MS-based proteomics can measure the expression of thousands to tens of thousands of genes and proteins, respectively. Often, a few thousand of them are identified as being significantly differentially regulated, but interpreting these results at a single gene or protein level is a tedious and frequently unsuccessful task. However, by integrating these data with protein-protein interaction networks, it is possible to identify �significantly regulated subnetworks that can be interpreted directly in a biological context. Moreover, identifying regulated entities from often noisy high throughput data should be supported by this kind of integration.One simple approach for detecting regulated sub�networks could involve distinguishing between significantly regulated and non-regulated phosphosites by applying standard hypothesis testing procedures such as t-statistics� or SAM 7 to each phosphosite (the number of data points corresponds to the number of experimental replicates). To avoid too many false positives, one must further apply concepts such as the family-wise error rate (FWER 8) or the false discovery rate (FDR 9) for multiple hypothesis testing correction. Subsequently, the resulting list of statistically significant entities can be mapped on pathways or protein-protein interaction networks, and connected subnetworks can be determined. While this procedure may point to regulated subnetworks, it is not an integrated solution, since the significance of each protein solely depends on the data of its own phosphosites, regardless of its interactions with other proteins. More sophisticated approaches use statistic-based techniques to score subnetworks. In these cases proteins are first mapped onto a protein interaction network, and subsequently high-scoring subnetworks are extracted. Ideker et al. 10 use an aggregated z-score of the formwhere k is the number of nodes in the subnetwork and zi is the z -score of a single protein in the subnetwork S. High-scoring subnetworks are then found with a simulated annealing approach 11. Chuang et al. 12 presented a method based on the same idea, but with a greedy search algorithm that specifies a seed and adds the best nodes in the neighbourhood until the aggregated score no longer improves. Subsequently, the significance of the resulting subnetworks is assessed based on null distributions estimated from permuted networks. However, neither method accounts for the network topology, i.e. the degree of interconnections between nodes.Subsequently, Sanguinetti et al. 13 introduced a Bayesian probabilistic model that integrates a priori network topology information into the analysis of high throughput data. The authors used Gibbs sampling 14 to obtain suitable posterior probabilities and thus derived subnetworks. A major drawback of this method, however, is the missing significance assessment for the resulting subnetworks.All methods described above used either only a subset of known protein-protein interactions or KEGG pathways 15 for their assessment. To obtain the most information from such investigations, and considering that canonical pathway databases like KEGG are rather static and contain only a limited number of interactions, it seems natural to use larger and frequently updated protein-protein interaction network databases such as STRING 16 or FunCoup 17.Here, we introduce a Bayesian probabilistic model that combines local as well as topological information, i.e. information about regulation of a certain node and information about the connectivity with its neighbours. Identification of subnetworks is carried out using a genetic algorithm (GA 18), followed by performing a significance analysis based on a global rank test 19. As a special feature, the significance test not only considers subnetworks, but also single nodes that are not part of any larger subnetwork. This makes the proposed method a powerful tool to uncover both differentially regulated subnetworks and differentially regulated single proteins. The performance was assessed on an artificial data set as well as on a comprehensive phosphoproteomics data set 20.MethodsData pre-processing and z-score calculationThe input of the proposed method is formed by a table with n rows and m columns; n being the number of detected phosphosites and m the number of biological replicates (i.e. MS measurements of experiments using identical settings but conducted independently). Several replicates (at least 3-5) are necessary to reliably identify differential phosphorylations. Each value in this table represents a ratio between the degree of phosphorylation under two conditions (e.g. the extend of phosphorylation of a specific site in cells treated with a drug versus its degree in untreated cells).Log-transformation is preferred before calculating the z-score, since the distribution of the transformed ratios is closer to normal. Subsequently, the log-ratios xij of phosphosites i = 1, ..., n and replicates j = 1, ..., m are further transformed to z-scores (referred to as single z-scores) using the formula:where �0 = 0, since it is expected that the majority of phosphosites are not differentially regulated and therefore their log-ratios are 0, and  the standard deviation across replicates estimated on the entire data set. Further, a combined z-score for each phosphosite over all replicates is calculated as:Not all phosphosites are detected in every experimental replicate. The resulting missing values are simply ignored, so, for example, if three replicates have been conducted and a given phosphosite was only detected in two of them, m is set to 2 for this site and the combined score is calculated based on the two available z-scores.Protein network preparationIn this work STRING 16 was chosen as the source for protein-protein interactions. STRING is a comprehensive resource that combines a vast number of databases derived in different ways (e.g. experimentally determined interactions, gene neighbourhood data, or data acquired via text mining) and is able to transfer homology �information across organisms. Obviously the method presented here is not limited to STRING and can also be used in combination with other protein-protein-interaction databases. Depending on the context of the study databases like HomoMINT 21, HPRD 22, or FunCoup 17 may be preferable.In STRING, all interactions are assigned with a �confidence value ranging from 0 to 1. To retain only high confidence interactions, a very conservative cut-off value of 0.995 is used. While this cut-off may seem too high, there is a valid reason for it: some interactions reach very high confidence values (> 0.99), although the evidence is only from text mining, which was considered too weak evidence. Furthermore, analysis of canonical pathways showed that virtually all known interactions pass this high cut-off of 0.995. Applying this cut-off, an interaction network of approximately 10,000 interactions between 2,997 proteins is obtained (STRING version 8.1).Subsequently, the phosphoproteomic data is mapped on the network (see upper part of Figure 1). Before doing so, the list of phosphosites has to be aggregated to a list of proteins, with one z-score per protein and replicate. This is done by simply assigning the values of the phosphosite with the highest combined z-score among all phosphosites of a protein to this protein. Then, each protein is mapped on the interaction network, where each node has m single z-scores and the combined z-score. Nodes that do not have a corresponding entry in the phosphoproteomics data set are thought of being not regulated and thus their z-scores are set to 0. On the other hand, proteins on the list that do not occur in the network are added but without any connections in order to give them the chance of being identified as regulated single proteins later on. In the genetic algorithm described below, only nodes in the interaction network will be considered; the set of unconnected nodes will be used again when it comes to significance assessment in the final step of the method.Bayesian probabilistic modelA probabilistic model that takes into account the above derived z-scores and the network topology was developed. Let ci &isln; {0,1} be the latent class variable, with ci = 1 if node i belongs to a differentially regulated subnetwork and ci = 0 if not. Note that the approach can easily be generalized to three classes, if up- and down-regulated subnetworks shall be distinguished. Given the combined z-scores z1, ..., zn derived from the observations, the posterior probability of the subnetwork configuration (c1, ..., cn) iswhere the right-hand side is obtained by applying Bayes� theorem. The denominator p (z1, ..., zn) does not depend on the ci and can be ignored when maximizing the posterior probability. Since the observed data of node i are mutually conditionally independent (given the other nodes� class variables) and depend only on the class variable of the node itself, the conditional probability can be written asNormal distributions (�, &sigma;) with � = 0 and &sigma; = 1 or &sigma; = &sigma; z are assumed:The prior probability for the subnetwork configuration p (c1, ..., cn) is derived analogously to the derivation of the joint probability distribution from conditional probabilities in Bayesian networks. Let Ni be the set of parents of node i. If the protein interaction network was a directed acyclic graph and the joint distribution fulfilled the Markov condition, the following equality would hold 23:Clearly, protein-protein interaction networks are no directed acyclic graphs. Nevertheless, the prior can be modelled by applying this theorem, if Ni is now defined as the set of neighbours of node i. The conditional probabilities are modelled similarly to 13:andor equivalentlywhere the parameter &alpha; determines the weight of the network structure, and |Ni| is the number of neighbours. For very large &alpha;, the posterior probability is not influenced by the network structure. Taking the logarithm of Equation (3), inserting above equations, and ignoring the constant summands, the log posterior probability is:The model parameters &alpha; and &sigma;z are fixed. In principle, they could be handled as unknown parameters in the Bayesian model, with the effect that the joint posterior probability would have to be maximized for (c1, ..., cn), &alpha; and &sigma;z. Since the results turned out to be rather insensitive to variations in &alpha; and &sigma;z (see Results and Discussion), the model and the optimization were simplified by a priori fixing of these parameters.Subnetwork extractionTo maximize the posterior probability, the optimal combination of the nodes� class associations (i.e. whether a protein is part of a regulated subnetwork to be extracted or not) has to be found. Since this problem is NP-hard 10, a heuristic strategy has to be applied. Genetic algorithms (GAs) are particularly well-suited for this kind of binary-valued combinatorial problem, since they are able to find close-to-optimum solutions even in complex scoring landscapes with many local optima (see e.g. 18 for more details). An overview of a standard GA workflow can be found in Additional file 1.To apply a GA to the subnetwork extraction problem, the network has to be encoded into a vector (i.e. an individual�s chromosome). Here each node in the network was assigned a consecutive index value that represents the position of this node in the vector. The values in the vector are binary: 1 meaning that the corresponding node is part of a regulated subnetwork, and 0 that it is not (see also Figure 1). Initially, values of these binary vectors are randomly generated, one for each of the 1000 individuals used. According to the Bayesian scoring function described above, the fitness of each individual is evaluated and 100 individuals are selected and used for breeding. Selection of these individuals is performed using the tournament selector (cf. 24), which randomly draws a subset of individuals and then determines the fittest within this subset. By repeating these steps 100 times, the 100 parent individuals are selected. Tournament selection ensures that average-performing individuals also have some chance to reproduce, which reduces the risk of premature convergence. Recombination of the selected individuals is carried out with two-point crossover, that is, the chromosomes of two parents are cut at two identical, random points c1 and c2, and the genes in the range [c1, c2] are crossed (see also Figure 1). Mutation, which is a simple bit ip, occurs with a probability of 0.05. The newly created �offspring�s fitness is assessed, and the fittest offspring replaces the weakest individual in the parental �generation. Then the algorithm continues with the selection of a new set of parents. The algorithm is run for 5000 generations, an empirically determined value, from where on no more appreciable improvement is observed. The best solution (represented by the individual with the highest fitness value in the final generation) is then used to extract all subnetworks from the entire network by starting at a given node, checking all neighbours for their class association, and iteratively adding all neighbours that belong to a regulated subnetwork. To avoid cycles, every node is flagged after it has been checked, and if no more neighbours are to be added to the current subnetwork in a certain iteration step, another as yet unchecked node is used as the starting point for the next subnetwork. This is repeated until no unchecked nodes are left, and therefore all subnetworks are detected. The z-score of a subnetwork is then defined as:where zi is the combined z -score of a protein as described in (2), Ss is the set of proteins in the subnetwork, and |Ss| is its size. The absolute value of zi is taken, since it is not know a priori whether the interaction between two proteins is activating or inhibiting, and therefore this distinction is not made. Rather only the degree of regulation is taken into account. When analysing gene or protein expression data, however, the direction of regulation may be important and should not be ignored. In such cases, the signed values can be used. In some cases, a subnetwork may contain only one node, which is not an issue, since both significant subnetworks and single nodes shall be determined anyway.Significance evaluationOnce regulated subnetworks are extracted, one has to determine their statistical significance. Single nodes (those that could not be mapped on the network but had been detected in the phosphoproteomics experiment) are regarded as subnetworks with only one member and are thus added to the list of subnetworks. The significance test is based on a modified version of the global rank test 19.The main idea of this method is to identify differentially regulated entities (genes, proteins or subnetworks) not based on hypothesis tests conducted for each entity independently, but rather based on the entire set of entities at once. Under the null hypothesis that entities are neither up- or down-regulated, the authors state the theorem of random ordering, i.e. that no entity can rank consistently high or low across all replicates. On the contrary, those entities that do consistently rank top or bottom in all replicates are identified as being significantly regulated. The number of identified significant entities will then solely depend on the number that determines how many entities are considered top or bottom ranked (here denoted as N), e.g. if N is chosen to be a small number, only a few entities or none at all will be among the top-N or bottom-N across all replicates.Raising N not only increases the number of identified significant entities, but also the expected number of false positives. As described in 19, this number of false positives can be estimated non-parametrically from the empirical null distribution. The idea for this procedure is that a non-regulated entity has the same probability of ranking top-N as ranking bottom-N. In other words, under the null hypothesis an entity has the same probability of ranking top-N across all replicates (denoted as TTT for three replicates [R = 3]) as ranking bottom-N across all of them (BBB) or top-N in the first two and bottom-N in the third (TTB). The same is true for all 2R = 8 classes of possible combinations of high and low ranks. Entities in the TTT and BBB classes are differentially regulated, and those in the remaining 2R - 2 = 6 classes are not. By dividing the average number of entities in the 6 non-consistently regulated classes by the number of those in one of the regulated classes, for each N the FDR can be estimated (once for up- and once for down-regulated entities). Different values of N can now be tried until the desired FDR level is reached (cf. algorithm in Table 1, line 10 - 19).For the application to subnetworks the method estimating false positives has to be modified, since the subnetworks� z-scores have non-negative values only, which means that bottom-N ranking subnetworks would be the ones with the weakest regulation. To overcome this problem, one first has to introduce another way of counting entities that fall under the non-consistently regulated classes, since the bottom ranked no longer represent differentially regulated entities. In this new counting process, not simply the entities in the non-regulated classes are counted but rather the signs of the replicates� z-scores are alternately changed (cf. algorithm in Table 1, line 5 - 8) and subsequently the number of entities that consistently rank top across all replicates after this transformation are counted (cf. algorithm in Table 1, line 14 - 16). In the case of the TTB class, for example, rather than determining the number of entities ranking top-N in the first two replicates and bottom-N in the third, the signs of the third replicate�s z-scores are flipped and one determines the number of entities now ranking top-N across all three replicates (those that are now in the TTT class). Note that both counting methods yield the same results, since it makes no difference whether one counts the number of bottom-N entities of a given replicate or the number of sign-flipped top-N ones.The z-score of a subnetwork is as defined in (11), where zi is the combined score over all replicates. To find subnetworks that are top ranked across all replicates z-scores have to be calculated for each replicate separately:where zij is calculated with equation (1). The problem here is that two nodes within a subnetwork - one with a highly positive and one with a highly negative score - would mutually neutralize each other. This effect is undesirable, since the direction of regulation does not matter for the application described here. On the other hand, if the absolute value of zij was taken, the sign-flipping used to calculate the FDR would have no effect. Thus, a trick is applied: if the sign of a given zij is in accordance with the z -scores of all replicates (i.e. if it has the same sign as �j� zij�), zij will contribute positively to the score , if not it will contribute negatively:where sgn is the sign function. This equation is applied in line 12, 15 and 21 of the algorithm in Table 1 to find consistently top ranked subnetworks.Entities that lack data in one replicate are accepted as differentially regulated, if they rank top in the remaining m - 1 replicates. This criterion compensates for missing data, a particular problem in mass spectrometry experiments.ImplementationPre-processing, z-score calculation and generation of the artificial data set was performed using Matlab. The SubExtractor algorithm is written in Java using the GA library Jenes (http://jenes.ciselab.org; version 1.2.0) and made available for download online at http://www.kinaxo.de/SubExtractor. Java version 5.0 or higher is required to run the program. Network diagrams were created with Cytoscape 25.Results and DiscussionArtificial dataTo benchmark and assess the proposed method, the algorithm was tested with artificial data. For this purpose, scale free networks based on the algorithm described in 26 with 1000 nodes and an average connectivity of approximately 3.5 were generated. Artificial z-scores were produced by sampling values for 969 nodes from a normal distribution with � = 0 and &sigma; = 1 representing non-regulated proteins (background distribution); three times for each entity to simulate experimental replicates. The values for the 31 regulated nodes were determined in a two-step procedure. First, the means x were sampled from a normal distribution with � = 0 and &sigma; = 5. Second, the actual replicate values were generated by drawing three times from a normal distribution with � = x and &sigma; = 1. All 31 regulated nodes are connected with each other forming one regulated subnetwork, which should be extracted by the algorithm as accurately as possible. This data generation process was repeated ten times, resulting in ten artificial data sets.Different &sigma;z and &alpha; values were used to assess the subnetwork reconstruction. Values of the &sigma;z parameter ranged from 2.0 to 8.0. The parameter &alpha; that determines the weight of the network structure on the entire Bayesian score was varied within a range of 0.01 to 10. Figure 2 shows the mean prediction accuracies over all ten artificial data sets at an FDR level of 0.05 (with 100 GA individuals and 3000 GA generations). Not surprisingly, a &sigma;z value of 5.0 delivers the best results (see Figures 2a and 2b), which is the same value as used for sampling the regulated nodes. At the same time, the graphs show a rather weak dependence on its exact value. Only very small values (e.g. &sigma;z = 2.0) lead to a considerable increase of false positive predictions (see Figure 2a), which was also expected since such values are already very close to the &alpha; value of the background distribution. For &alpha;, the best results could be obtained by setting its value between 0.5 and 2.5 (see Figures 2c and 2d). Lower values cause the model to put too much weight on the network structure, which causes especially weakly regulated nodes that are only connected to strongly regulated ones to be spuriously incorporate into the regulated subnetwork. Higher values, on the other hand, result in under-weighting of the network structure, which in turn causes an incorporation of moderately regulated nodes even if the majority of their neighbours are not regulated at all. Furthermore, one can clearly see that the results are not sensitive to the exact values of the parameters &alpha; and &sigma;z, which supports the decision to fix them a priori. However, the overall prediction accuracy steeply increases between &alpha;-values of 0.25 and 0.5 (see Figure 2d). This is due to the effect that if a non-regulated node has only one connection to a well-regulated node (and no other connections) and &alpha; is smaller than a critical value &alpha;c, it will be added to the differentially regulated subnetwork, just because of this special connectivity property. To avoid this undesired effect, &alpha; has to be chosen(the derivation of this formula and further explanation can be found in Additional file 1). For &sigma;z = 5.0 this leads to valid &alpha; values of &alpha; > 0.25, which explains the large number of false positives for values d 0.25 (as depicted in Figure 2c).A detailed graphical view of the &alpha; parameter�s impact on the prediction results can be seen in Figure 3, where the originally regulated network and three examples of networks reconstructed by the method (for a fixed &sigma;z of 5.0 and alpha set to 0.3, 1 and 5) are depicted. A small value of &alpha; just above &alpha;c(Figure 3 top right) causes an acquisition of some low regulated nodes (the bright ones within the green circles), since the Bayesian score is mainly influenced by the network structure. On the other hand, one node is lost since it has many connections to non-regulated nodes but only a few to regulated ones (7 and 3, respectively) causing the network to break apart (upper right empty circle). For &alpha; = 0.3, the algorithm extracts 4 false positive nodes while missing 3 true positives. On the contrary, a high value of &alpha; = 5 (Figure 3 bottom right) causes the algorithm to almost entirely ignore topology information, and thus nodes are incorporated mostly according to their level of regulation. This leads to false positive classification of 5 nodes, of which 4 are fairly well-regulated (i.e. although they were sampled from the background distribution they received a high score by chance), and the fifth one-although not regulated itself-acts as a link to one of the well-regulated false positives. Only one of the true positives was missed. The results for &alpha; = 1 (Figure 3 bottom left) form a good compromise between the previous two settings, as neither of the two score components is over-weighted. This reconstructed network has a lower number of false predictions (3 false positives and 1 false negative), which is a very satisfying result given that many nodes classified as regulated show very moderate regulation (weaker than some nodes from the background distribution). To demonstrate the advantage of SubExtractor over a method that does not take network information into account, the original global rank test 19 was applied to the artificial data sets. The average false negative rate of this method at an FDR level of 0.05 was 29.0%, the average false positive rate was 0.2% (the best results of SubExtractor with &alpha; = 1.0 and &sigma;z = 5.0 were 11.3% and 0.7%, respectively). Although SubExtractor produces slightly more false positives, the superior capability to detect true positives even if they are only moderately regulated is obvious.Sorafenib mode of action studySubsequently the algorithm was applied to a real phosphoproteomics experiment, in which triply SILAC-labeled PC3 cells were incubated with the small molecule kinase inhibitor sorafenib (Nexavar�, Bayer HealthCare) for 30 and 90 minutes, including a control 20. Proteins were extracted and digested, and phosphopeptides were enriched using SCX-IMAC/TiO2. High resolution LC-MS/MS data of three biological replicates were processed using MaxQuant 27.A total of 15, 800 class-1 sites (i.e. highly confident phosphosites) on 3, 900 unique proteins were detected. Since two time points are not sufficient to perform any sensible time-course analysis, the more time point with the more extreme absolute value of its average log ratios (either  or ) over the three replicates is taken for each phosphosite. Phosphorylation sites were then pre-processed as described in the Methods section. Interaction data was taken from STRING version 8.1 16 and pre-processed as described in Methods. The &alpha; parameter was set to 1.0, based on the observations made from artificial data. &sigma;z was estimated by applying the original global rank method 19 to the list of phosphosites and calculating the standard deviation of the resulting differentially regulated sites� combined z-scores, which led to a value of &sigma;z = 5.5. Other parameter values were also tested, resulting in very similar networks (data not shown). This supported the findings from the artificial data study, where it has been shown that results are rather insensitive to the exact parameter values.At an FDR level of 0.05, the proposed algorithm was able to reconstruct 21 significantly regulated subnetworks with 168 nodes in total. Additionally, 225 individual proteins were identified as significantly regulated. A selection of the results are depicted in Figure 4. Besides parts of the MAPK pathway, which is known to be affected by sorafenib, the largest network contains a substantial fraction of proteins from the mTOR pathway, which was previously not known to be affected. Subsequent enrichment analyses of the mTOR KEGG pathway confirmed the results of SubExtractor (p-value < 0.005 using Fisher�s exact test; data not shown). In particular, a substantial number of translation initiation factors (eIF�s) show regulation of phosphorylation upon sorafenib treatment. Further biological interpretation and validation will be published in 20.Another example in Figure 4 depicts a subnetwork centring the tumour suppressor p53. This example shows the strength of the method to reconstruct networks, even if the hub of the subnetwork is not phosphorylated, not detected, or not regulated. Greedy search methods that grow subnetworks by selecting a seed and iteratively expand it by adding regulated neighbours cannot identify such subnetworks. The complete result in Cytoscape session file format is provided as Additional file 2, and in Excel format as Additional file 3.Normal distribution assumptionBoth regulated and non-regulated phosphosites were assumed to be normally distributed with different variances (1 and &sigma;z, respectively). Hence, a mixture model of these two distributions should describe the experimental data well. To further investigate this assumption we created a probability plot, which is used to assess whether data comes from a given distribution. However, the plot (see Additional file 1) indicates that a mixture model of standard normal and t location scale distribution (essentially a normal distribution with heavier tails) fits the data better than the mixture of the two normals.Next, the impact of the different distributions on the SubExtractor results was assessed by modelling the regulated data (cf. Equation 5) with a t location scale distribution with the mean parameter set to 0, a variance of  and 6 degrees of freedom (estimated based on the fit above). However, the results of the t-normal mixture model were strikingly similar to those of the normal-normal mixture, suggesting that the slightly better fit of the former does not increase the prediction accuracy (compare Additional files 2 and 4). Given the simplicity of normal distributions (i.e. in comparison to t distributions no degrees of freedom have to be estimated) and the comparable results, the normal-normal mixture model was considered preferable.Alternative STRING network preparationInstead of applying a very conservative cut-off of 0.995 to the combined STRING interaction score, an alternative version was created where the score was re-computed omitting text mining evidence. The computation was performed according to 28, and should avoid very high confidence values that are only due to sometimes doubtable text mining evidences. For the re-computed score the cut-off was set to 0.95, which is still conservative but increases the number of interactions by 80% and the number of involved proteins by 20%. SubExtractor was then run with this version of network information and the sorafenib data (all parameters were left unchanged). While the general tendency of affected pathways and groups of proteins is very similar, the nodes of the largest network have roughly doubled �making it rather complex (see Additional file 5). The decision on which network data file to use is left to the user, as it may depend on the application whether he prefers rather complex but comprehensive networks or smaller networks that are easier to interpret. Both files are available for download at http://www.kinaxo.de/SubExtractor.ConclusionHere, we propose a novel method, SubExtractor, for extracting differentially regulated subnetworks from protein-protein interaction networks based on data from global quantification technologies. The core of the method is formed by a Bayesian probabilistic model that accounts for the regulation of proteins as well as for the network structure. A genetic algorithm was implemented to find the subnetworks that maximize the Bayesian score. Furthermore, a global rank significance test was used to distinguish between significantly regulated subnetworks and those formed by chance.Although some parts of the method have already been presented elsewhere (cf. Introduction), the main advantage of the proposed method is the combination of the three main parts: Bayesian probabilistic model, powerful heuristics in the form of GA and rigorous significance testing. To our knowledge, none of the existing methods offer this combination. Additionally, the significances of single nodes (i.e. either proteins that could not be mapped on the interaction network or extracted single-node networks) are also assessed, which makes separate statistics on a protein scope redundant. Using data from the comprehensive STRING database guarantees high reliability of the detected interaction subnetworks. The method was tested with artificial data sets and showed a high level of reconstruction accuracy. Knowledge from this study was transferred to a mode of action study, where SubExtractor revealed differentially regulated subnetworks from known and novel sorafenib-affected pathways, e.g. the MAPK-and mTOR-pathway, respectively. These regulated subnetworks led to creating new hypotheses about the mode of action of sorafenib in prostate cancer PC3 cells 20. Furthermore, the subnetworks may also play an important role in discovering biomarkers. It has been shown 12 that identified markers for class prediction are more reproducible if their identification is based on subnetworks rather than single genes. Generalization of the proposed method for identifying subnetwork markers used for class prediction will be the focus of future work.Authors� contributionsMK designed and implemented the algorithm, performed the statistical analyses and drafted the manuscript. KG and AT designed and supervised the biological experiments and helped with the interpretation of the results. CS assisted in designing the algorithm, participated in drafting the manuscript and supervised the project. All authors read and approved the final manuscript.
http://www.biomedcentral.com/content/supplementary/1471-2105-11-351-S3.XLS
http://www.biomedcentral.com/content/supplementary/1471-2105-11-351-S4.ZIP
BackgroundProtein phosphorylation is one of the most important posttranslational modifications in a living cell. Virtually all cellular processes are regulated by the interplay of protein kinases (proteins that phosphorylate their substrates) and phosphatases (proteins that dephosphorylate their substrates). Phosphorylation events are particularly important in signal transduction, where signals caused by external stimuli are transmitted from the cell membrane to the nucleus. Here, phosphorylation events often act as switches to activate or deactivate their substrate proteins. In many cases, substrates of this process are again kinases. This leads to the signal being propagated along a signalling cascade until it finally triggers a response (e.g. transcription or translation). Although signal transduction pathways are often depicted as a linear series of steps, they may be considerably more complex in reality: many run in parallel, are interconnected and have feedback loops. Aberrations in these cascades can lead to diseases, including cancer 12.To identify phosphorylation sites (phosphosites) on a large scale, mass spectrometry (MS) has become an increasingly important technology 3. Quantitative MS in particular not only enables detection of phosphosites, but can also measure their relative abundance. By comparing phosphorylation patterns before and after treatment of cells with a drug that interferes with cell signalling (e.g. kinase inhibitors), one can deduce the drug�s effect on a signal transduction pathway. Unravelling a drug�s mode of action is vital during drug discovery and development, helping to identify new medical applications, suggesting its use in combinational therapy, and predicting the responsiveness of patients 456.Similarly, other global quantification technologies such as microarray and MS-based proteomics can measure the expression of thousands to tens of thousands of genes and proteins, respectively. Often, a few thousand of them are identified as being significantly differentially regulated, but interpreting these results at a single gene or protein level is a tedious and frequently unsuccessful task. However, by integrating these data with protein-protein interaction networks, it is possible to identify �significantly regulated subnetworks that can be interpreted directly in a biological context. Moreover, identifying regulated entities from often noisy high throughput data should be supported by this kind of integration.One simple approach for detecting regulated sub�networks could involve distinguishing between significantly regulated and non-regulated phosphosites by applying standard hypothesis testing procedures such as t-statistics� or SAM 7 to each phosphosite (the number of data points corresponds to the number of experimental replicates). To avoid too many false positives, one must further apply concepts such as the family-wise error rate (FWER 8) or the false discovery rate (FDR 9) for multiple hypothesis testing correction. Subsequently, the resulting list of statistically significant entities can be mapped on pathways or protein-protein interaction networks, and connected subnetworks can be determined. While this procedure may point to regulated subnetworks, it is not an integrated solution, since the significance of each protein solely depends on the data of its own phosphosites, regardless of its interactions with other proteins. More sophisticated approaches use statistic-based techniques to score subnetworks. In these cases proteins are first mapped onto a protein interaction network, and subsequently high-scoring subnetworks are extracted. Ideker et al. 10 use an aggregated z-score of the formwhere k is the number of nodes in the subnetwork and zi is the z -score of a single protein in the subnetwork S. High-scoring subnetworks are then found with a simulated annealing approach 11. Chuang et al. 12 presented a method based on the same idea, but with a greedy search algorithm that specifies a seed and adds the best nodes in the neighbourhood until the aggregated score no longer improves. Subsequently, the significance of the resulting subnetworks is assessed based on null distributions estimated from permuted networks. However, neither method accounts for the network topology, i.e. the degree of interconnections between nodes.Subsequently, Sanguinetti et al. 13 introduced a Bayesian probabilistic model that integrates a priori network topology information into the analysis of high throughput data. The authors used Gibbs sampling 14 to obtain suitable posterior probabilities and thus derived subnetworks. A major drawback of this method, however, is the missing significance assessment for the resulting subnetworks.All methods described above used either only a subset of known protein-protein interactions or KEGG pathways 15 for their assessment. To obtain the most information from such investigations, and considering that canonical pathway databases like KEGG are rather static and contain only a limited number of interactions, it seems natural to use larger and frequently updated protein-protein interaction network databases such as STRING 16 or FunCoup 17.Here, we introduce a Bayesian probabilistic model that combines local as well as topological information, i.e. information about regulation of a certain node and information about the connectivity with its neighbours. Identification of subnetworks is carried out using a genetic algorithm (GA 18), followed by performing a significance analysis based on a global rank test 19. As a special feature, the significance test not only considers subnetworks, but also single nodes that are not part of any larger subnetwork. This makes the proposed method a powerful tool to uncover both differentially regulated subnetworks and differentially regulated single proteins. The performance was assessed on an artificial data set as well as on a comprehensive phosphoproteomics data set 20.MethodsData pre-processing and z-score calculationThe input of the proposed method is formed by a table with n rows and m columns; n being the number of detected phosphosites and m the number of biological replicates (i.e. MS measurements of experiments using identical settings but conducted independently). Several replicates (at least 3-5) are necessary to reliably identify differential phosphorylations. Each value in this table represents a ratio between the degree of phosphorylation under two conditions (e.g. the extend of phosphorylation of a specific site in cells treated with a drug versus its degree in untreated cells).Log-transformation is preferred before calculating the z-score, since the distribution of the transformed ratios is closer to normal. Subsequently, the log-ratios xij of phosphosites i = 1, ..., n and replicates j = 1, ..., m are further transformed to z-scores (referred to as single z-scores) using the formula:where �0 = 0, since it is expected that the majority of phosphosites are not differentially regulated and therefore their log-ratios are 0, and  the standard deviation across replicates estimated on the entire data set. Further, a combined z-score for each phosphosite over all replicates is calculated as:Not all phosphosites are detected in every experimental replicate. The resulting missing values are simply ignored, so, for example, if three replicates have been conducted and a given phosphosite was only detected in two of them, m is set to 2 for this site and the combined score is calculated based on the two available z-scores.Protein network preparationIn this work STRING 16 was chosen as the source for protein-protein interactions. STRING is a comprehensive resource that combines a vast number of databases derived in different ways (e.g. experimentally determined interactions, gene neighbourhood data, or data acquired via text mining) and is able to transfer homology �information across organisms. Obviously the method presented here is not limited to STRING and can also be used in combination with other protein-protein-interaction databases. Depending on the context of the study databases like HomoMINT 21, HPRD 22, or FunCoup 17 may be preferable.In STRING, all interactions are assigned with a �confidence value ranging from 0 to 1. To retain only high confidence interactions, a very conservative cut-off value of 0.995 is used. While this cut-off may seem too high, there is a valid reason for it: some interactions reach very high confidence values (> 0.99), although the evidence is only from text mining, which was considered too weak evidence. Furthermore, analysis of canonical pathways showed that virtually all known interactions pass this high cut-off of 0.995. Applying this cut-off, an interaction network of approximately 10,000 interactions between 2,997 proteins is obtained (STRING version 8.1).Subsequently, the phosphoproteomic data is mapped on the network (see upper part of Figure 1). Before doing so, the list of phosphosites has to be aggregated to a list of proteins, with one z-score per protein and replicate. This is done by simply assigning the values of the phosphosite with the highest combined z-score among all phosphosites of a protein to this protein. Then, each protein is mapped on the interaction network, where each node has m single z-scores and the combined z-score. Nodes that do not have a corresponding entry in the phosphoproteomics data set are thought of being not regulated and thus their z-scores are set to 0. On the other hand, proteins on the list that do not occur in the network are added but without any connections in order to give them the chance of being identified as regulated single proteins later on. In the genetic algorithm described below, only nodes in the interaction network will be considered; the set of unconnected nodes will be used again when it comes to significance assessment in the final step of the method.Bayesian probabilistic modelA probabilistic model that takes into account the above derived z-scores and the network topology was developed. Let ci &isln; {0,1} be the latent class variable, with ci = 1 if node i belongs to a differentially regulated subnetwork and ci = 0 if not. Note that the approach can easily be generalized to three classes, if up- and down-regulated subnetworks shall be distinguished. Given the combined z-scores z1, ..., zn derived from the observations, the posterior probability of the subnetwork configuration (c1, ..., cn) iswhere the right-hand side is obtained by applying Bayes� theorem. The denominator p (z1, ..., zn) does not depend on the ci and can be ignored when maximizing the posterior probability. Since the observed data of node i are mutually conditionally independent (given the other nodes� class variables) and depend only on the class variable of the node itself, the conditional probability can be written asNormal distributions (�, &sigma;) with � = 0 and &sigma; = 1 or &sigma; = &sigma; z are assumed:The prior probability for the subnetwork configuration p (c1, ..., cn) is derived analogously to the derivation of the joint probability distribution from conditional probabilities in Bayesian networks. Let Ni be the set of parents of node i. If the protein interaction network was a directed acyclic graph and the joint distribution fulfilled the Markov condition, the following equality would hold 23:Clearly, protein-protein interaction networks are no directed acyclic graphs. Nevertheless, the prior can be modelled by applying this theorem, if Ni is now defined as the set of neighbours of node i. The conditional probabilities are modelled similarly to 13:andor equivalentlywhere the parameter &alpha; determines the weight of the network structure, and |Ni| is the number of neighbours. For very large &alpha;, the posterior probability is not influenced by the network structure. Taking the logarithm of Equation (3), inserting above equations, and ignoring the constant summands, the log posterior probability is:The model parameters &alpha; and &sigma;z are fixed. In principle, they could be handled as unknown parameters in the Bayesian model, with the effect that the joint posterior probability would have to be maximized for (c1, ..., cn), &alpha; and &sigma;z. Since the results turned out to be rather insensitive to variations in &alpha; and &sigma;z (see Results and Discussion), the model and the optimization were simplified by a priori fixing of these parameters.Subnetwork extractionTo maximize the posterior probability, the optimal combination of the nodes� class associations (i.e. whether a protein is part of a regulated subnetwork to be extracted or not) has to be found. Since this problem is NP-hard 10, a heuristic strategy has to be applied. Genetic algorithms (GAs) are particularly well-suited for this kind of binary-valued combinatorial problem, since they are able to find close-to-optimum solutions even in complex scoring landscapes with many local optima (see e.g. 18 for more details). An overview of a standard GA workflow can be found in Additional file 1.To apply a GA to the subnetwork extraction problem, the network has to be encoded into a vector (i.e. an individual�s chromosome). Here each node in the network was assigned a consecutive index value that represents the position of this node in the vector. The values in the vector are binary: 1 meaning that the corresponding node is part of a regulated subnetwork, and 0 that it is not (see also Figure 1). Initially, values of these binary vectors are randomly generated, one for each of the 1000 individuals used. According to the Bayesian scoring function described above, the fitness of each individual is evaluated and 100 individuals are selected and used for breeding. Selection of these individuals is performed using the tournament selector (cf. 24), which randomly draws a subset of individuals and then determines the fittest within this subset. By repeating these steps 100 times, the 100 parent individuals are selected. Tournament selection ensures that average-performing individuals also have some chance to reproduce, which reduces the risk of premature convergence. Recombination of the selected individuals is carried out with two-point crossover, that is, the chromosomes of two parents are cut at two identical, random points c1 and c2, and the genes in the range [c1, c2] are crossed (see also Figure 1). Mutation, which is a simple bit ip, occurs with a probability of 0.05. The newly created �offspring�s fitness is assessed, and the fittest offspring replaces the weakest individual in the parental �generation. Then the algorithm continues with the selection of a new set of parents. The algorithm is run for 5000 generations, an empirically determined value, from where on no more appreciable improvement is observed. The best solution (represented by the individual with the highest fitness value in the final generation) is then used to extract all subnetworks from the entire network by starting at a given node, checking all neighbours for their class association, and iteratively adding all neighbours that belong to a regulated subnetwork. To avoid cycles, every node is flagged after it has been checked, and if no more neighbours are to be added to the current subnetwork in a certain iteration step, another as yet unchecked node is used as the starting point for the next subnetwork. This is repeated until no unchecked nodes are left, and therefore all subnetworks are detected. The z-score of a subnetwork is then defined as:where zi is the combined z -score of a protein as described in (2), Ss is the set of proteins in the subnetwork, and |Ss| is its size. The absolute value of zi is taken, since it is not know a priori whether the interaction between two proteins is activating or inhibiting, and therefore this distinction is not made. Rather only the degree of regulation is taken into account. When analysing gene or protein expression data, however, the direction of regulation may be important and should not be ignored. In such cases, the signed values can be used. In some cases, a subnetwork may contain only one node, which is not an issue, since both significant subnetworks and single nodes shall be determined anyway.Significance evaluationOnce regulated subnetworks are extracted, one has to determine their statistical significance. Single nodes (those that could not be mapped on the network but had been detected in the phosphoproteomics experiment) are regarded as subnetworks with only one member and are thus added to the list of subnetworks. The significance test is based on a modified version of the global rank test 19.The main idea of this method is to identify differentially regulated entities (genes, proteins or subnetworks) not based on hypothesis tests conducted for each entity independently, but rather based on the entire set of entities at once. Under the null hypothesis that entities are neither up- or down-regulated, the authors state the theorem of random ordering, i.e. that no entity can rank consistently high or low across all replicates. On the contrary, those entities that do consistently rank top or bottom in all replicates are identified as being significantly regulated. The number of identified significant entities will then solely depend on the number that determines how many entities are considered top or bottom ranked (here denoted as N), e.g. if N is chosen to be a small number, only a few entities or none at all will be among the top-N or bottom-N across all replicates.Raising N not only increases the number of identified significant entities, but also the expected number of false positives. As described in 19, this number of false positives can be estimated non-parametrically from the empirical null distribution. The idea for this procedure is that a non-regulated entity has the same probability of ranking top-N as ranking bottom-N. In other words, under the null hypothesis an entity has the same probability of ranking top-N across all replicates (denoted as TTT for three replicates [R = 3]) as ranking bottom-N across all of them (BBB) or top-N in the first two and bottom-N in the third (TTB). The same is true for all 2R = 8 classes of possible combinations of high and low ranks. Entities in the TTT and BBB classes are differentially regulated, and those in the remaining 2R - 2 = 6 classes are not. By dividing the average number of entities in the 6 non-consistently regulated classes by the number of those in one of the regulated classes, for each N the FDR can be estimated (once for up- and once for down-regulated entities). Different values of N can now be tried until the desired FDR level is reached (cf. algorithm in Table 1, line 10 - 19).For the application to subnetworks the method estimating false positives has to be modified, since the subnetworks� z-scores have non-negative values only, which means that bottom-N ranking subnetworks would be the ones with the weakest regulation. To overcome this problem, one first has to introduce another way of counting entities that fall under the non-consistently regulated classes, since the bottom ranked no longer represent differentially regulated entities. In this new counting process, not simply the entities in the non-regulated classes are counted but rather the signs of the replicates� z-scores are alternately changed (cf. algorithm in Table 1, line 5 - 8) and subsequently the number of entities that consistently rank top across all replicates after this transformation are counted (cf. algorithm in Table 1, line 14 - 16). In the case of the TTB class, for example, rather than determining the number of entities ranking top-N in the first two replicates and bottom-N in the third, the signs of the third replicate�s z-scores are flipped and one determines the number of entities now ranking top-N across all three replicates (those that are now in the TTT class). Note that both counting methods yield the same results, since it makes no difference whether one counts the number of bottom-N entities of a given replicate or the number of sign-flipped top-N ones.The z-score of a subnetwork is as defined in (11), where zi is the combined score over all replicates. To find subnetworks that are top ranked across all replicates z-scores have to be calculated for each replicate separately:where zij is calculated with equation (1). The problem here is that two nodes within a subnetwork - one with a highly positive and one with a highly negative score - would mutually neutralize each other. This effect is undesirable, since the direction of regulation does not matter for the application described here. On the other hand, if the absolute value of zij was taken, the sign-flipping used to calculate the FDR would have no effect. Thus, a trick is applied: if the sign of a given zij is in accordance with the z -scores of all replicates (i.e. if it has the same sign as �j� zij�), zij will contribute positively to the score , if not it will contribute negatively:where sgn is the sign function. This equation is applied in line 12, 15 and 21 of the algorithm in Table 1 to find consistently top ranked subnetworks.Entities that lack data in one replicate are accepted as differentially regulated, if they rank top in the remaining m - 1 replicates. This criterion compensates for missing data, a particular problem in mass spectrometry experiments.ImplementationPre-processing, z-score calculation and generation of the artificial data set was performed using Matlab. The SubExtractor algorithm is written in Java using the GA library Jenes (http://jenes.ciselab.org; version 1.2.0) and made available for download online at http://www.kinaxo.de/SubExtractor. Java version 5.0 or higher is required to run the program. Network diagrams were created with Cytoscape 25.Results and DiscussionArtificial dataTo benchmark and assess the proposed method, the algorithm was tested with artificial data. For this purpose, scale free networks based on the algorithm described in 26 with 1000 nodes and an average connectivity of approximately 3.5 were generated. Artificial z-scores were produced by sampling values for 969 nodes from a normal distribution with � = 0 and &sigma; = 1 representing non-regulated proteins (background distribution); three times for each entity to simulate experimental replicates. The values for the 31 regulated nodes were determined in a two-step procedure. First, the means x were sampled from a normal distribution with � = 0 and &sigma; = 5. Second, the actual replicate values were generated by drawing three times from a normal distribution with � = x and &sigma; = 1. All 31 regulated nodes are connected with each other forming one regulated subnetwork, which should be extracted by the algorithm as accurately as possible. This data generation process was repeated ten times, resulting in ten artificial data sets.Different &sigma;z and &alpha; values were used to assess the subnetwork reconstruction. Values of the &sigma;z parameter ranged from 2.0 to 8.0. The parameter &alpha; that determines the weight of the network structure on the entire Bayesian score was varied within a range of 0.01 to 10. Figure 2 shows the mean prediction accuracies over all ten artificial data sets at an FDR level of 0.05 (with 100 GA individuals and 3000 GA generations). Not surprisingly, a &sigma;z value of 5.0 delivers the best results (see Figures 2a and 2b), which is the same value as used for sampling the regulated nodes. At the same time, the graphs show a rather weak dependence on its exact value. Only very small values (e.g. &sigma;z = 2.0) lead to a considerable increase of false positive predictions (see Figure 2a), which was also expected since such values are already very close to the &alpha; value of the background distribution. For &alpha;, the best results could be obtained by setting its value between 0.5 and 2.5 (see Figures 2c and 2d). Lower values cause the model to put too much weight on the network structure, which causes especially weakly regulated nodes that are only connected to strongly regulated ones to be spuriously incorporate into the regulated subnetwork. Higher values, on the other hand, result in under-weighting of the network structure, which in turn causes an incorporation of moderately regulated nodes even if the majority of their neighbours are not regulated at all. Furthermore, one can clearly see that the results are not sensitive to the exact values of the parameters &alpha; and &sigma;z, which supports the decision to fix them a priori. However, the overall prediction accuracy steeply increases between &alpha;-values of 0.25 and 0.5 (see Figure 2d). This is due to the effect that if a non-regulated node has only one connection to a well-regulated node (and no other connections) and &alpha; is smaller than a critical value &alpha;c, it will be added to the differentially regulated subnetwork, just because of this special connectivity property. To avoid this undesired effect, &alpha; has to be chosen(the derivation of this formula and further explanation can be found in Additional file 1). For &sigma;z = 5.0 this leads to valid &alpha; values of &alpha; > 0.25, which explains the large number of false positives for values d 0.25 (as depicted in Figure 2c).A detailed graphical view of the &alpha; parameter�s impact on the prediction results can be seen in Figure 3, where the originally regulated network and three examples of networks reconstructed by the method (for a fixed &sigma;z of 5.0 and alpha set to 0.3, 1 and 5) are depicted. A small value of &alpha; just above &alpha;c(Figure 3 top right) causes an acquisition of some low regulated nodes (the bright ones within the green circles), since the Bayesian score is mainly influenced by the network structure. On the other hand, one node is lost since it has many connections to non-regulated nodes but only a few to regulated ones (7 and 3, respectively) causing the network to break apart (upper right empty circle). For &alpha; = 0.3, the algorithm extracts 4 false positive nodes while missing 3 true positives. On the contrary, a high value of &alpha; = 5 (Figure 3 bottom right) causes the algorithm to almost entirely ignore topology information, and thus nodes are incorporated mostly according to their level of regulation. This leads to false positive classification of 5 nodes, of which 4 are fairly well-regulated (i.e. although they were sampled from the background distribution they received a high score by chance), and the fifth one-although not regulated itself-acts as a link to one of the well-regulated false positives. Only one of the true positives was missed. The results for &alpha; = 1 (Figure 3 bottom left) form a good compromise between the previous two settings, as neither of the two score components is over-weighted. This reconstructed network has a lower number of false predictions (3 false positives and 1 false negative), which is a very satisfying result given that many nodes classified as regulated show very moderate regulation (weaker than some nodes from the background distribution). To demonstrate the advantage of SubExtractor over a method that does not take network information into account, the original global rank test 19 was applied to the artificial data sets. The average false negative rate of this method at an FDR level of 0.05 was 29.0%, the average false positive rate was 0.2% (the best results of SubExtractor with &alpha; = 1.0 and &sigma;z = 5.0 were 11.3% and 0.7%, respectively). Although SubExtractor produces slightly more false positives, the superior capability to detect true positives even if they are only moderately regulated is obvious.Sorafenib mode of action studySubsequently the algorithm was applied to a real phosphoproteomics experiment, in which triply SILAC-labeled PC3 cells were incubated with the small molecule kinase inhibitor sorafenib (Nexavar�, Bayer HealthCare) for 30 and 90 minutes, including a control 20. Proteins were extracted and digested, and phosphopeptides were enriched using SCX-IMAC/TiO2. High resolution LC-MS/MS data of three biological replicates were processed using MaxQuant 27.A total of 15, 800 class-1 sites (i.e. highly confident phosphosites) on 3, 900 unique proteins were detected. Since two time points are not sufficient to perform any sensible time-course analysis, the more time point with the more extreme absolute value of its average log ratios (either  or ) over the three replicates is taken for each phosphosite. Phosphorylation sites were then pre-processed as described in the Methods section. Interaction data was taken from STRING version 8.1 16 and pre-processed as described in Methods. The &alpha; parameter was set to 1.0, based on the observations made from artificial data. &sigma;z was estimated by applying the original global rank method 19 to the list of phosphosites and calculating the standard deviation of the resulting differentially regulated sites� combined z-scores, which led to a value of &sigma;z = 5.5. Other parameter values were also tested, resulting in very similar networks (data not shown). This supported the findings from the artificial data study, where it has been shown that results are rather insensitive to the exact parameter values.At an FDR level of 0.05, the proposed algorithm was able to reconstruct 21 significantly regulated subnetworks with 168 nodes in total. Additionally, 225 individual proteins were identified as significantly regulated. A selection of the results are depicted in Figure 4. Besides parts of the MAPK pathway, which is known to be affected by sorafenib, the largest network contains a substantial fraction of proteins from the mTOR pathway, which was previously not known to be affected. Subsequent enrichment analyses of the mTOR KEGG pathway confirmed the results of SubExtractor (p-value < 0.005 using Fisher�s exact test; data not shown). In particular, a substantial number of translation initiation factors (eIF�s) show regulation of phosphorylation upon sorafenib treatment. Further biological interpretation and validation will be published in 20.Another example in Figure 4 depicts a subnetwork centring the tumour suppressor p53. This example shows the strength of the method to reconstruct networks, even if the hub of the subnetwork is not phosphorylated, not detected, or not regulated. Greedy search methods that grow subnetworks by selecting a seed and iteratively expand it by adding regulated neighbours cannot identify such subnetworks. The complete result in Cytoscape session file format is provided as Additional file 2, and in Excel format as Additional file 3.Normal distribution assumptionBoth regulated and non-regulated phosphosites were assumed to be normally distributed with different variances (1 and &sigma;z, respectively). Hence, a mixture model of these two distributions should describe the experimental data well. To further investigate this assumption we created a probability plot, which is used to assess whether data comes from a given distribution. However, the plot (see Additional file 1) indicates that a mixture model of standard normal and t location scale distribution (essentially a normal distribution with heavier tails) fits the data better than the mixture of the two normals.Next, the impact of the different distributions on the SubExtractor results was assessed by modelling the regulated data (cf. Equation 5) with a t location scale distribution with the mean parameter set to 0, a variance of  and 6 degrees of freedom (estimated based on the fit above). However, the results of the t-normal mixture model were strikingly similar to those of the normal-normal mixture, suggesting that the slightly better fit of the former does not increase the prediction accuracy (compare Additional files 2 and 4). Given the simplicity of normal distributions (i.e. in comparison to t distributions no degrees of freedom have to be estimated) and the comparable results, the normal-normal mixture model was considered preferable.Alternative STRING network preparationInstead of applying a very conservative cut-off of 0.995 to the combined STRING interaction score, an alternative version was created where the score was re-computed omitting text mining evidence. The computation was performed according to 28, and should avoid very high confidence values that are only due to sometimes doubtable text mining evidences. For the re-computed score the cut-off was set to 0.95, which is still conservative but increases the number of interactions by 80% and the number of involved proteins by 20%. SubExtractor was then run with this version of network information and the sorafenib data (all parameters were left unchanged). While the general tendency of affected pathways and groups of proteins is very similar, the nodes of the largest network have roughly doubled �making it rather complex (see Additional file 5). The decision on which network data file to use is left to the user, as it may depend on the application whether he prefers rather complex but comprehensive networks or smaller networks that are easier to interpret. Both files are available for download at http://www.kinaxo.de/SubExtractor.ConclusionHere, we propose a novel method, SubExtractor, for extracting differentially regulated subnetworks from protein-protein interaction networks based on data from global quantification technologies. The core of the method is formed by a Bayesian probabilistic model that accounts for the regulation of proteins as well as for the network structure. A genetic algorithm was implemented to find the subnetworks that maximize the Bayesian score. Furthermore, a global rank significance test was used to distinguish between significantly regulated subnetworks and those formed by chance.Although some parts of the method have already been presented elsewhere (cf. Introduction), the main advantage of the proposed method is the combination of the three main parts: Bayesian probabilistic model, powerful heuristics in the form of GA and rigorous significance testing. To our knowledge, none of the existing methods offer this combination. Additionally, the significances of single nodes (i.e. either proteins that could not be mapped on the interaction network or extracted single-node networks) are also assessed, which makes separate statistics on a protein scope redundant. Using data from the comprehensive STRING database guarantees high reliability of the detected interaction subnetworks. The method was tested with artificial data sets and showed a high level of reconstruction accuracy. Knowledge from this study was transferred to a mode of action study, where SubExtractor revealed differentially regulated subnetworks from known and novel sorafenib-affected pathways, e.g. the MAPK-and mTOR-pathway, respectively. These regulated subnetworks led to creating new hypotheses about the mode of action of sorafenib in prostate cancer PC3 cells 20. Furthermore, the subnetworks may also play an important role in discovering biomarkers. It has been shown 12 that identified markers for class prediction are more reproducible if their identification is based on subnetworks rather than single genes. Generalization of the proposed method for identifying subnetwork markers used for class prediction will be the focus of future work.Authors� contributionsMK designed and implemented the algorithm, performed the statistical analyses and drafted the manuscript. KG and AT designed and supervised the biological experiments and helped with the interpretation of the results. CS assisted in designing the algorithm, participated in drafting the manuscript and supervised the project. All authors read and approved the final manuscript.
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BackgroundProtein phosphorylation is one of the most important posttranslational modifications in a living cell. Virtually all cellular processes are regulated by the interplay of protein kinases (proteins that phosphorylate their substrates) and phosphatases (proteins that dephosphorylate their substrates). Phosphorylation events are particularly important in signal transduction, where signals caused by external stimuli are transmitted from the cell membrane to the nucleus. Here, phosphorylation events often act as switches to activate or deactivate their substrate proteins. In many cases, substrates of this process are again kinases. This leads to the signal being propagated along a signalling cascade until it finally triggers a response (e.g. transcription or translation). Although signal transduction pathways are often depicted as a linear series of steps, they may be considerably more complex in reality: many run in parallel, are interconnected and have feedback loops. Aberrations in these cascades can lead to diseases, including cancer 12.To identify phosphorylation sites (phosphosites) on a large scale, mass spectrometry (MS) has become an increasingly important technology 3. Quantitative MS in particular not only enables detection of phosphosites, but can also measure their relative abundance. By comparing phosphorylation patterns before and after treatment of cells with a drug that interferes with cell signalling (e.g. kinase inhibitors), one can deduce the drug�s effect on a signal transduction pathway. Unravelling a drug�s mode of action is vital during drug discovery and development, helping to identify new medical applications, suggesting its use in combinational therapy, and predicting the responsiveness of patients 456.Similarly, other global quantification technologies such as microarray and MS-based proteomics can measure the expression of thousands to tens of thousands of genes and proteins, respectively. Often, a few thousand of them are identified as being significantly differentially regulated, but interpreting these results at a single gene or protein level is a tedious and frequently unsuccessful task. However, by integrating these data with protein-protein interaction networks, it is possible to identify �significantly regulated subnetworks that can be interpreted directly in a biological context. Moreover, identifying regulated entities from often noisy high throughput data should be supported by this kind of integration.One simple approach for detecting regulated sub�networks could involve distinguishing between significantly regulated and non-regulated phosphosites by applying standard hypothesis testing procedures such as t-statistics� or SAM 7 to each phosphosite (the number of data points corresponds to the number of experimental replicates). To avoid too many false positives, one must further apply concepts such as the family-wise error rate (FWER 8) or the false discovery rate (FDR 9) for multiple hypothesis testing correction. Subsequently, the resulting list of statistically significant entities can be mapped on pathways or protein-protein interaction networks, and connected subnetworks can be determined. While this procedure may point to regulated subnetworks, it is not an integrated solution, since the significance of each protein solely depends on the data of its own phosphosites, regardless of its interactions with other proteins. More sophisticated approaches use statistic-based techniques to score subnetworks. In these cases proteins are first mapped onto a protein interaction network, and subsequently high-scoring subnetworks are extracted. Ideker et al. 10 use an aggregated z-score of the formwhere k is the number of nodes in the subnetwork and zi is the z -score of a single protein in the subnetwork S. High-scoring subnetworks are then found with a simulated annealing approach 11. Chuang et al. 12 presented a method based on the same idea, but with a greedy search algorithm that specifies a seed and adds the best nodes in the neighbourhood until the aggregated score no longer improves. Subsequently, the significance of the resulting subnetworks is assessed based on null distributions estimated from permuted networks. However, neither method accounts for the network topology, i.e. the degree of interconnections between nodes.Subsequently, Sanguinetti et al. 13 introduced a Bayesian probabilistic model that integrates a priori network topology information into the analysis of high throughput data. The authors used Gibbs sampling 14 to obtain suitable posterior probabilities and thus derived subnetworks. A major drawback of this method, however, is the missing significance assessment for the resulting subnetworks.All methods described above used either only a subset of known protein-protein interactions or KEGG pathways 15 for their assessment. To obtain the most information from such investigations, and considering that canonical pathway databases like KEGG are rather static and contain only a limited number of interactions, it seems natural to use larger and frequently updated protein-protein interaction network databases such as STRING 16 or FunCoup 17.Here, we introduce a Bayesian probabilistic model that combines local as well as topological information, i.e. information about regulation of a certain node and information about the connectivity with its neighbours. Identification of subnetworks is carried out using a genetic algorithm (GA 18), followed by performing a significance analysis based on a global rank test 19. As a special feature, the significance test not only considers subnetworks, but also single nodes that are not part of any larger subnetwork. This makes the proposed method a powerful tool to uncover both differentially regulated subnetworks and differentially regulated single proteins. The performance was assessed on an artificial data set as well as on a comprehensive phosphoproteomics data set 20.MethodsData pre-processing and z-score calculationThe input of the proposed method is formed by a table with n rows and m columns; n being the number of detected phosphosites and m the number of biological replicates (i.e. MS measurements of experiments using identical settings but conducted independently). Several replicates (at least 3-5) are necessary to reliably identify differential phosphorylations. Each value in this table represents a ratio between the degree of phosphorylation under two conditions (e.g. the extend of phosphorylation of a specific site in cells treated with a drug versus its degree in untreated cells).Log-transformation is preferred before calculating the z-score, since the distribution of the transformed ratios is closer to normal. Subsequently, the log-ratios xij of phosphosites i = 1, ..., n and replicates j = 1, ..., m are further transformed to z-scores (referred to as single z-scores) using the formula:where �0 = 0, since it is expected that the majority of phosphosites are not differentially regulated and therefore their log-ratios are 0, and  the standard deviation across replicates estimated on the entire data set. Further, a combined z-score for each phosphosite over all replicates is calculated as:Not all phosphosites are detected in every experimental replicate. The resulting missing values are simply ignored, so, for example, if three replicates have been conducted and a given phosphosite was only detected in two of them, m is set to 2 for this site and the combined score is calculated based on the two available z-scores.Protein network preparationIn this work STRING 16 was chosen as the source for protein-protein interactions. STRING is a comprehensive resource that combines a vast number of databases derived in different ways (e.g. experimentally determined interactions, gene neighbourhood data, or data acquired via text mining) and is able to transfer homology �information across organisms. Obviously the method presented here is not limited to STRING and can also be used in combination with other protein-protein-interaction databases. Depending on the context of the study databases like HomoMINT 21, HPRD 22, or FunCoup 17 may be preferable.In STRING, all interactions are assigned with a �confidence value ranging from 0 to 1. To retain only high confidence interactions, a very conservative cut-off value of 0.995 is used. While this cut-off may seem too high, there is a valid reason for it: some interactions reach very high confidence values (> 0.99), although the evidence is only from text mining, which was considered too weak evidence. Furthermore, analysis of canonical pathways showed that virtually all known interactions pass this high cut-off of 0.995. Applying this cut-off, an interaction network of approximately 10,000 interactions between 2,997 proteins is obtained (STRING version 8.1).Subsequently, the phosphoproteomic data is mapped on the network (see upper part of Figure 1). Before doing so, the list of phosphosites has to be aggregated to a list of proteins, with one z-score per protein and replicate. This is done by simply assigning the values of the phosphosite with the highest combined z-score among all phosphosites of a protein to this protein. Then, each protein is mapped on the interaction network, where each node has m single z-scores and the combined z-score. Nodes that do not have a corresponding entry in the phosphoproteomics data set are thought of being not regulated and thus their z-scores are set to 0. On the other hand, proteins on the list that do not occur in the network are added but without any connections in order to give them the chance of being identified as regulated single proteins later on. In the genetic algorithm described below, only nodes in the interaction network will be considered; the set of unconnected nodes will be used again when it comes to significance assessment in the final step of the method.Bayesian probabilistic modelA probabilistic model that takes into account the above derived z-scores and the network topology was developed. Let ci &isln; {0,1} be the latent class variable, with ci = 1 if node i belongs to a differentially regulated subnetwork and ci = 0 if not. Note that the approach can easily be generalized to three classes, if up- and down-regulated subnetworks shall be distinguished. Given the combined z-scores z1, ..., zn derived from the observations, the posterior probability of the subnetwork configuration (c1, ..., cn) iswhere the right-hand side is obtained by applying Bayes� theorem. The denominator p (z1, ..., zn) does not depend on the ci and can be ignored when maximizing the posterior probability. Since the observed data of node i are mutually conditionally independent (given the other nodes� class variables) and depend only on the class variable of the node itself, the conditional probability can be written asNormal distributions (�, &sigma;) with � = 0 and &sigma; = 1 or &sigma; = &sigma; z are assumed:The prior probability for the subnetwork configuration p (c1, ..., cn) is derived analogously to the derivation of the joint probability distribution from conditional probabilities in Bayesian networks. Let Ni be the set of parents of node i. If the protein interaction network was a directed acyclic graph and the joint distribution fulfilled the Markov condition, the following equality would hold 23:Clearly, protein-protein interaction networks are no directed acyclic graphs. Nevertheless, the prior can be modelled by applying this theorem, if Ni is now defined as the set of neighbours of node i. The conditional probabilities are modelled similarly to 13:andor equivalentlywhere the parameter &alpha; determines the weight of the network structure, and |Ni| is the number of neighbours. For very large &alpha;, the posterior probability is not influenced by the network structure. Taking the logarithm of Equation (3), inserting above equations, and ignoring the constant summands, the log posterior probability is:The model parameters &alpha; and &sigma;z are fixed. In principle, they could be handled as unknown parameters in the Bayesian model, with the effect that the joint posterior probability would have to be maximized for (c1, ..., cn), &alpha; and &sigma;z. Since the results turned out to be rather insensitive to variations in &alpha; and &sigma;z (see Results and Discussion), the model and the optimization were simplified by a priori fixing of these parameters.Subnetwork extractionTo maximize the posterior probability, the optimal combination of the nodes� class associations (i.e. whether a protein is part of a regulated subnetwork to be extracted or not) has to be found. Since this problem is NP-hard 10, a heuristic strategy has to be applied. Genetic algorithms (GAs) are particularly well-suited for this kind of binary-valued combinatorial problem, since they are able to find close-to-optimum solutions even in complex scoring landscapes with many local optima (see e.g. 18 for more details). An overview of a standard GA workflow can be found in Additional file 1.To apply a GA to the subnetwork extraction problem, the network has to be encoded into a vector (i.e. an individual�s chromosome). Here each node in the network was assigned a consecutive index value that represents the position of this node in the vector. The values in the vector are binary: 1 meaning that the corresponding node is part of a regulated subnetwork, and 0 that it is not (see also Figure 1). Initially, values of these binary vectors are randomly generated, one for each of the 1000 individuals used. According to the Bayesian scoring function described above, the fitness of each individual is evaluated and 100 individuals are selected and used for breeding. Selection of these individuals is performed using the tournament selector (cf. 24), which randomly draws a subset of individuals and then determines the fittest within this subset. By repeating these steps 100 times, the 100 parent individuals are selected. Tournament selection ensures that average-performing individuals also have some chance to reproduce, which reduces the risk of premature convergence. Recombination of the selected individuals is carried out with two-point crossover, that is, the chromosomes of two parents are cut at two identical, random points c1 and c2, and the genes in the range [c1, c2] are crossed (see also Figure 1). Mutation, which is a simple bit ip, occurs with a probability of 0.05. The newly created �offspring�s fitness is assessed, and the fittest offspring replaces the weakest individual in the parental �generation. Then the algorithm continues with the selection of a new set of parents. The algorithm is run for 5000 generations, an empirically determined value, from where on no more appreciable improvement is observed. The best solution (represented by the individual with the highest fitness value in the final generation) is then used to extract all subnetworks from the entire network by starting at a given node, checking all neighbours for their class association, and iteratively adding all neighbours that belong to a regulated subnetwork. To avoid cycles, every node is flagged after it has been checked, and if no more neighbours are to be added to the current subnetwork in a certain iteration step, another as yet unchecked node is used as the starting point for the next subnetwork. This is repeated until no unchecked nodes are left, and therefore all subnetworks are detected. The z-score of a subnetwork is then defined as:where zi is the combined z -score of a protein as described in (2), Ss is the set of proteins in the subnetwork, and |Ss| is its size. The absolute value of zi is taken, since it is not know a priori whether the interaction between two proteins is activating or inhibiting, and therefore this distinction is not made. Rather only the degree of regulation is taken into account. When analysing gene or protein expression data, however, the direction of regulation may be important and should not be ignored. In such cases, the signed values can be used. In some cases, a subnetwork may contain only one node, which is not an issue, since both significant subnetworks and single nodes shall be determined anyway.Significance evaluationOnce regulated subnetworks are extracted, one has to determine their statistical significance. Single nodes (those that could not be mapped on the network but had been detected in the phosphoproteomics experiment) are regarded as subnetworks with only one member and are thus added to the list of subnetworks. The significance test is based on a modified version of the global rank test 19.The main idea of this method is to identify differentially regulated entities (genes, proteins or subnetworks) not based on hypothesis tests conducted for each entity independently, but rather based on the entire set of entities at once. Under the null hypothesis that entities are neither up- or down-regulated, the authors state the theorem of random ordering, i.e. that no entity can rank consistently high or low across all replicates. On the contrary, those entities that do consistently rank top or bottom in all replicates are identified as being significantly regulated. The number of identified significant entities will then solely depend on the number that determines how many entities are considered top or bottom ranked (here denoted as N), e.g. if N is chosen to be a small number, only a few entities or none at all will be among the top-N or bottom-N across all replicates.Raising N not only increases the number of identified significant entities, but also the expected number of false positives. As described in 19, this number of false positives can be estimated non-parametrically from the empirical null distribution. The idea for this procedure is that a non-regulated entity has the same probability of ranking top-N as ranking bottom-N. In other words, under the null hypothesis an entity has the same probability of ranking top-N across all replicates (denoted as TTT for three replicates [R = 3]) as ranking bottom-N across all of them (BBB) or top-N in the first two and bottom-N in the third (TTB). The same is true for all 2R = 8 classes of possible combinations of high and low ranks. Entities in the TTT and BBB classes are differentially regulated, and those in the remaining 2R - 2 = 6 classes are not. By dividing the average number of entities in the 6 non-consistently regulated classes by the number of those in one of the regulated classes, for each N the FDR can be estimated (once for up- and once for down-regulated entities). Different values of N can now be tried until the desired FDR level is reached (cf. algorithm in Table 1, line 10 - 19).For the application to subnetworks the method estimating false positives has to be modified, since the subnetworks� z-scores have non-negative values only, which means that bottom-N ranking subnetworks would be the ones with the weakest regulation. To overcome this problem, one first has to introduce another way of counting entities that fall under the non-consistently regulated classes, since the bottom ranked no longer represent differentially regulated entities. In this new counting process, not simply the entities in the non-regulated classes are counted but rather the signs of the replicates� z-scores are alternately changed (cf. algorithm in Table 1, line 5 - 8) and subsequently the number of entities that consistently rank top across all replicates after this transformation are counted (cf. algorithm in Table 1, line 14 - 16). In the case of the TTB class, for example, rather than determining the number of entities ranking top-N in the first two replicates and bottom-N in the third, the signs of the third replicate�s z-scores are flipped and one determines the number of entities now ranking top-N across all three replicates (those that are now in the TTT class). Note that both counting methods yield the same results, since it makes no difference whether one counts the number of bottom-N entities of a given replicate or the number of sign-flipped top-N ones.The z-score of a subnetwork is as defined in (11), where zi is the combined score over all replicates. To find subnetworks that are top ranked across all replicates z-scores have to be calculated for each replicate separately:where zij is calculated with equation (1). The problem here is that two nodes within a subnetwork - one with a highly positive and one with a highly negative score - would mutually neutralize each other. This effect is undesirable, since the direction of regulation does not matter for the application described here. On the other hand, if the absolute value of zij was taken, the sign-flipping used to calculate the FDR would have no effect. Thus, a trick is applied: if the sign of a given zij is in accordance with the z -scores of all replicates (i.e. if it has the same sign as �j� zij�), zij will contribute positively to the score , if not it will contribute negatively:where sgn is the sign function. This equation is applied in line 12, 15 and 21 of the algorithm in Table 1 to find consistently top ranked subnetworks.Entities that lack data in one replicate are accepted as differentially regulated, if they rank top in the remaining m - 1 replicates. This criterion compensates for missing data, a particular problem in mass spectrometry experiments.ImplementationPre-processing, z-score calculation and generation of the artificial data set was performed using Matlab. The SubExtractor algorithm is written in Java using the GA library Jenes (http://jenes.ciselab.org; version 1.2.0) and made available for download online at http://www.kinaxo.de/SubExtractor. Java version 5.0 or higher is required to run the program. Network diagrams were created with Cytoscape 25.Results and DiscussionArtificial dataTo benchmark and assess the proposed method, the algorithm was tested with artificial data. For this purpose, scale free networks based on the algorithm described in 26 with 1000 nodes and an average connectivity of approximately 3.5 were generated. Artificial z-scores were produced by sampling values for 969 nodes from a normal distribution with � = 0 and &sigma; = 1 representing non-regulated proteins (background distribution); three times for each entity to simulate experimental replicates. The values for the 31 regulated nodes were determined in a two-step procedure. First, the means x were sampled from a normal distribution with � = 0 and &sigma; = 5. Second, the actual replicate values were generated by drawing three times from a normal distribution with � = x and &sigma; = 1. All 31 regulated nodes are connected with each other forming one regulated subnetwork, which should be extracted by the algorithm as accurately as possible. This data generation process was repeated ten times, resulting in ten artificial data sets.Different &sigma;z and &alpha; values were used to assess the subnetwork reconstruction. Values of the &sigma;z parameter ranged from 2.0 to 8.0. The parameter &alpha; that determines the weight of the network structure on the entire Bayesian score was varied within a range of 0.01 to 10. Figure 2 shows the mean prediction accuracies over all ten artificial data sets at an FDR level of 0.05 (with 100 GA individuals and 3000 GA generations). Not surprisingly, a &sigma;z value of 5.0 delivers the best results (see Figures 2a and 2b), which is the same value as used for sampling the regulated nodes. At the same time, the graphs show a rather weak dependence on its exact value. Only very small values (e.g. &sigma;z = 2.0) lead to a considerable increase of false positive predictions (see Figure 2a), which was also expected since such values are already very close to the &alpha; value of the background distribution. For &alpha;, the best results could be obtained by setting its value between 0.5 and 2.5 (see Figures 2c and 2d). Lower values cause the model to put too much weight on the network structure, which causes especially weakly regulated nodes that are only connected to strongly regulated ones to be spuriously incorporate into the regulated subnetwork. Higher values, on the other hand, result in under-weighting of the network structure, which in turn causes an incorporation of moderately regulated nodes even if the majority of their neighbours are not regulated at all. Furthermore, one can clearly see that the results are not sensitive to the exact values of the parameters &alpha; and &sigma;z, which supports the decision to fix them a priori. However, the overall prediction accuracy steeply increases between &alpha;-values of 0.25 and 0.5 (see Figure 2d). This is due to the effect that if a non-regulated node has only one connection to a well-regulated node (and no other connections) and &alpha; is smaller than a critical value &alpha;c, it will be added to the differentially regulated subnetwork, just because of this special connectivity property. To avoid this undesired effect, &alpha; has to be chosen(the derivation of this formula and further explanation can be found in Additional file 1). For &sigma;z = 5.0 this leads to valid &alpha; values of &alpha; > 0.25, which explains the large number of false positives for values d 0.25 (as depicted in Figure 2c).A detailed graphical view of the &alpha; parameter�s impact on the prediction results can be seen in Figure 3, where the originally regulated network and three examples of networks reconstructed by the method (for a fixed &sigma;z of 5.0 and alpha set to 0.3, 1 and 5) are depicted. A small value of &alpha; just above &alpha;c(Figure 3 top right) causes an acquisition of some low regulated nodes (the bright ones within the green circles), since the Bayesian score is mainly influenced by the network structure. On the other hand, one node is lost since it has many connections to non-regulated nodes but only a few to regulated ones (7 and 3, respectively) causing the network to break apart (upper right empty circle). For &alpha; = 0.3, the algorithm extracts 4 false positive nodes while missing 3 true positives. On the contrary, a high value of &alpha; = 5 (Figure 3 bottom right) causes the algorithm to almost entirely ignore topology information, and thus nodes are incorporated mostly according to their level of regulation. This leads to false positive classification of 5 nodes, of which 4 are fairly well-regulated (i.e. although they were sampled from the background distribution they received a high score by chance), and the fifth one-although not regulated itself-acts as a link to one of the well-regulated false positives. Only one of the true positives was missed. The results for &alpha; = 1 (Figure 3 bottom left) form a good compromise between the previous two settings, as neither of the two score components is over-weighted. This reconstructed network has a lower number of false predictions (3 false positives and 1 false negative), which is a very satisfying result given that many nodes classified as regulated show very moderate regulation (weaker than some nodes from the background distribution). To demonstrate the advantage of SubExtractor over a method that does not take network information into account, the original global rank test 19 was applied to the artificial data sets. The average false negative rate of this method at an FDR level of 0.05 was 29.0%, the average false positive rate was 0.2% (the best results of SubExtractor with &alpha; = 1.0 and &sigma;z = 5.0 were 11.3% and 0.7%, respectively). Although SubExtractor produces slightly more false positives, the superior capability to detect true positives even if they are only moderately regulated is obvious.Sorafenib mode of action studySubsequently the algorithm was applied to a real phosphoproteomics experiment, in which triply SILAC-labeled PC3 cells were incubated with the small molecule kinase inhibitor sorafenib (Nexavar�, Bayer HealthCare) for 30 and 90 minutes, including a control 20. Proteins were extracted and digested, and phosphopeptides were enriched using SCX-IMAC/TiO2. High resolution LC-MS/MS data of three biological replicates were processed using MaxQuant 27.A total of 15, 800 class-1 sites (i.e. highly confident phosphosites) on 3, 900 unique proteins were detected. Since two time points are not sufficient to perform any sensible time-course analysis, the more time point with the more extreme absolute value of its average log ratios (either  or ) over the three replicates is taken for each phosphosite. Phosphorylation sites were then pre-processed as described in the Methods section. Interaction data was taken from STRING version 8.1 16 and pre-processed as described in Methods. The &alpha; parameter was set to 1.0, based on the observations made from artificial data. &sigma;z was estimated by applying the original global rank method 19 to the list of phosphosites and calculating the standard deviation of the resulting differentially regulated sites� combined z-scores, which led to a value of &sigma;z = 5.5. Other parameter values were also tested, resulting in very similar networks (data not shown). This supported the findings from the artificial data study, where it has been shown that results are rather insensitive to the exact parameter values.At an FDR level of 0.05, the proposed algorithm was able to reconstruct 21 significantly regulated subnetworks with 168 nodes in total. Additionally, 225 individual proteins were identified as significantly regulated. A selection of the results are depicted in Figure 4. Besides parts of the MAPK pathway, which is known to be affected by sorafenib, the largest network contains a substantial fraction of proteins from the mTOR pathway, which was previously not known to be affected. Subsequent enrichment analyses of the mTOR KEGG pathway confirmed the results of SubExtractor (p-value < 0.005 using Fisher�s exact test; data not shown). In particular, a substantial number of translation initiation factors (eIF�s) show regulation of phosphorylation upon sorafenib treatment. Further biological interpretation and validation will be published in 20.Another example in Figure 4 depicts a subnetwork centring the tumour suppressor p53. This example shows the strength of the method to reconstruct networks, even if the hub of the subnetwork is not phosphorylated, not detected, or not regulated. Greedy search methods that grow subnetworks by selecting a seed and iteratively expand it by adding regulated neighbours cannot identify such subnetworks. The complete result in Cytoscape session file format is provided as Additional file 2, and in Excel format as Additional file 3.Normal distribution assumptionBoth regulated and non-regulated phosphosites were assumed to be normally distributed with different variances (1 and &sigma;z, respectively). Hence, a mixture model of these two distributions should describe the experimental data well. To further investigate this assumption we created a probability plot, which is used to assess whether data comes from a given distribution. However, the plot (see Additional file 1) indicates that a mixture model of standard normal and t location scale distribution (essentially a normal distribution with heavier tails) fits the data better than the mixture of the two normals.Next, the impact of the different distributions on the SubExtractor results was assessed by modelling the regulated data (cf. Equation 5) with a t location scale distribution with the mean parameter set to 0, a variance of  and 6 degrees of freedom (estimated based on the fit above). However, the results of the t-normal mixture model were strikingly similar to those of the normal-normal mixture, suggesting that the slightly better fit of the former does not increase the prediction accuracy (compare Additional files 2 and 4). Given the simplicity of normal distributions (i.e. in comparison to t distributions no degrees of freedom have to be estimated) and the comparable results, the normal-normal mixture model was considered preferable.Alternative STRING network preparationInstead of applying a very conservative cut-off of 0.995 to the combined STRING interaction score, an alternative version was created where the score was re-computed omitting text mining evidence. The computation was performed according to 28, and should avoid very high confidence values that are only due to sometimes doubtable text mining evidences. For the re-computed score the cut-off was set to 0.95, which is still conservative but increases the number of interactions by 80% and the number of involved proteins by 20%. SubExtractor was then run with this version of network information and the sorafenib data (all parameters were left unchanged). While the general tendency of affected pathways and groups of proteins is very similar, the nodes of the largest network have roughly doubled �making it rather complex (see Additional file 5). The decision on which network data file to use is left to the user, as it may depend on the application whether he prefers rather complex but comprehensive networks or smaller networks that are easier to interpret. Both files are available for download at http://www.kinaxo.de/SubExtractor.ConclusionHere, we propose a novel method, SubExtractor, for extracting differentially regulated subnetworks from protein-protein interaction networks based on data from global quantification technologies. The core of the method is formed by a Bayesian probabilistic model that accounts for the regulation of proteins as well as for the network structure. A genetic algorithm was implemented to find the subnetworks that maximize the Bayesian score. Furthermore, a global rank significance test was used to distinguish between significantly regulated subnetworks and those formed by chance.Although some parts of the method have already been presented elsewhere (cf. Introduction), the main advantage of the proposed method is the combination of the three main parts: Bayesian probabilistic model, powerful heuristics in the form of GA and rigorous significance testing. To our knowledge, none of the existing methods offer this combination. Additionally, the significances of single nodes (i.e. either proteins that could not be mapped on the interaction network or extracted single-node networks) are also assessed, which makes separate statistics on a protein scope redundant. Using data from the comprehensive STRING database guarantees high reliability of the detected interaction subnetworks. The method was tested with artificial data sets and showed a high level of reconstruction accuracy. Knowledge from this study was transferred to a mode of action study, where SubExtractor revealed differentially regulated subnetworks from known and novel sorafenib-affected pathways, e.g. the MAPK-and mTOR-pathway, respectively. These regulated subnetworks led to creating new hypotheses about the mode of action of sorafenib in prostate cancer PC3 cells 20. Furthermore, the subnetworks may also play an important role in discovering biomarkers. It has been shown 12 that identified markers for class prediction are more reproducible if their identification is based on subnetworks rather than single genes. Generalization of the proposed method for identifying subnetwork markers used for class prediction will be the focus of future work.Authors� contributionsMK designed and implemented the algorithm, performed the statistical analyses and drafted the manuscript. KG and AT designed and supervised the biological experiments and helped with the interpretation of the results. CS assisted in designing the algorithm, participated in drafting the manuscript and supervised the project. All authors read and approved the final manuscript.
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